
Résumé

Les architectures d’aujourd’hui sont basées sur le modèle de von Neumann qui place
au centre l’exécution des instructions. Ces architectures font face à de fortes limita-
tions dans le contexte du big data. En effet, le mur mémoire est un phénomène lié à
l’écart grandissant de performances entre les processeurs et les mémoires depuis les
années 80. Pour atténuer cet écart, une hiérarchie de caches a été mise en place mais
elle a en contrepartie largement augmentée la consommation énergétique sans être
adaptée pour les grands jeux de données modernes. Non seulement ces architectures
ont du mal avec une masse de données toujours croissantes à cause de leur haute
consommation énergétique et leur faible débit, elles ne peuvent plus uniquement se
baser sur les avancées technologiques pour s’améliorer. Ceci appelle à un changement
de paradigme vers des architectures data centrées où le traitement de quantités de
données massives en parallèle est le principe de base.

De nouvelles mémoires non volatiles promettent du stockage haute densité et
peuvent intégrer du calcul en mémoire. L’intérêt de calculer en mémoire est d’opérer
là où se trouve la donnée, ou tout du moins le plus proche possible, pour supprimer
les allées et venues permanentes entre la mémoire et les cœurs de calcul. Les solutions
existantes utilisent du calcul analogique très efficace mais prompt au bruit et avec une
flexibilité limitée. Quand les données doivent être réécrites en mémoire, l’endurance
de ces mémoires non volatiles n’est pas discutée. Nous concevons un emballage numé-
rique qui étend les fonctionnalités mémoire avec du calcul vectoriel et développons
une plateforme de simulation pour faire de l’exploration architecturale. Notre circuit,
bien nommé C-SRAM, peut être intégré avec la plupart des technologies mémoire et
est équipé de sa propre mémoire SRAM. Nous démontrons qu’effectuer le calcul au
sommet de la hiérarchie mémoire, c’est à dire proche du stockage permanent, permet
une réduction de la consommation énergétique d’un facteur 17.4 et une accélération
du traitement en moyenne d’un facteur 12.9 comparé à un traitement avec un cœur
SIMD. Grâce à la mémoire tampon intégrée, l’endurance de la mémoire non volatile
n’est pas impactée et de fait, l’espérance de vie du système s’en trouve augmentée par
rapport à d’autres solutions de calcul en mémoire.

Mots clés : calcul en mémoire, mémoire non volatile, architecture des systèmes, mé-
moire de classe de stockage, mur mémoire, mur énergétique, goulot d’étranglement
de von Neumann
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Abstract

Today computing centric von Neumann architectures face strong limitations in the
data-intensive context of numerous applications. The key limitation is the memory
wall due to increased performance gap between processors and memories. To mitigate
this gap, cache hierarchy was introduced but it largely increased energy consumption
while not being adapted for modern big datasets. Not only those architectures struggle
with big datasets due to their high energy consumption and slow bandwidth, they can
no longer be improved through technological advances such as node scaling. This
calls for a paradigm shift to data centric architecture where treating massive amounts
of data in a parallel fashion is the core principle.

New emerging Non-Volatile Memories (NVM) promise high density data storage
and can easily integrate In-Memory Computing (IMC). IMC purposes is to compute
where the data is or the closest to, to suppress back and forth data movements from
the memory to the cores. Existing solutions use analog computing that has high effi-
ciency but limited flexibility. When data needs to be written back after computation,
endurance of NVM is often not discussed. We design a digital wrapper that extends
memory functionality with vector computing capabilities and develop a simulation
platform for architecture exploration. Our digital wrapper, aka C-SRAM, can be inte-
grated with most memory technologies and comes with its own small SRAM buffer.
We demonstrate that computing at the top of the memory hierarchy, i.e. close to the
permanent storage, grants in average 17.4× energy reduction and 12.9× speed-up
versus SIMD baseline. Thanks to SRAM buffer, NVM’s endurance is not impaired and
thereby extends system lifetime compared to other IMC solutions.

Keywords: memory wall, energy wall, von Neumann bottleneck, in-memory comput-
ing, non volatile memories, system architecture, storage class memory
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Preamble

This thesis is divided in five chapters that will introduce you to the why am i doing this
thesis: the global context raises issues about computing performances and efficiency
that requires an innovating solution (Chapter 1). In-Memory Computing (IMC) is a
promising solution compatible with new emerging Non Volatile Memories (NVMs)
that also brings new technological improvements in the computer world. We study
state-of-the-art in Chapter 2 and show how it misses two key points about NVMs
endurance and where to compute in the memory hierarchy. We propose our solution,
a digital wrapper around a Static Random Access Memory (SRAM) that we call C-SRAM
(Chapter 3). Our C-SRAM can then be tightly coupled to others NVMs or Storage Class
Memories (SCMs). To perform an architectural evaluation, we develop a simulation
platform fed with technological parameters from state-of-the-art and our own works
(Chapter 4). Putting it all together, we show that computing at the top of the memory
hierarchy, i.e. close to mass and permanent storage, yields the most gains for both
execution time and energy reduction (Chapter 5).

I hope you will enjoy reading this thesis as much as I enjoyed writing this final
sentence.
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1 Introduction & Contextualisation

Hardware design comes to the end of its golden era where a simple wait of a few
months could yield huge improvements for both performance and energy consump-
tion. This was mainly driven by technology scaling and moving to smaller and more
advanced nodes. However, as industry reaches the smallest possible node (3 nm),
progress can no longer come from technology itself but must come from finer ar-
chitecture and software designs to better utilize hardware. Famous von Neumann
architecture where memories and computing are physically separate and logically
distinct units must evolve to face new computing requirements posed by recent rise
of big data applications and artificial intelligence. Internet of Things (IoT) devices are
also presenting a challenge for energy efficient designs in the wake of societal changes
in regard to global warming and energy sobriety.
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1 Introduction & Contextualisation – 1.1 The end of technology advancement

This first chapter will give the reader a very wide introduction and contextualisation
on semiconductor technology facing the end of a cycle with a halt to miniaturisation
and other well known obstacles to densification. The key to improve performance is to
add more transistors into circuits. However this is defined by physical limits that have
been or are being reached nowadays, including energy and memory wall problems
(section 1.1). New technologies that may resolve partially these problems are being
introduced, especially for emerging memories (section 1.2). These new memories en-
able a new computing paradigm to solve the admitted von Neumann bottleneck that is
exacerbated by big data applications and the rise of artificial intelligence (section 1.3).

1.1 The end of technology advancement

1.1.1 Physical limits
For years, what has driven the semiconductor industry progress is the technology
scaling, i.e. the miniaturisation of the transistor. Reducing the transistor, base unit
of all the digital world, by a factor of

p
2 leads to a doubling in the total number of

transistors in the same area. Gordon Moore predicted that this doubling would occur
every 24 months, later revised down to 18 months. This is known as the Moore’s
law [1] which held true for almost 50 years (Figure 1.1). More transistors equals more
functionalities or more complex ones; as such, we have seen parallel computing
emerged during the 2000s with Single Instruction Multiple Data (SIMD) and multicore
Central Processing Units (CPUs). However, miniaturisation has limits that cannot be
exceeded. It is physically impossible to make a transistor that is smaller than a few
atoms and we are already hitting this limit with 3 nm. This means that to answer the
growing need for more computing power, semiconductor industry will have to rely on
better architectural designs and smarter software models.

Moving forward to more advanced nodes has also some technical limits that can
be seen as side effects for laypeople readers. Smaller transistors are more leaky as
the space between different voltage domains is also reduced. On the other hand, it
allows to reduce voltage because the threshold voltage is lowered as well. All in one,
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Figure 1.1: ITRS roadmap as of 2020
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Table 1. Technology and circuit projections for processor chip components.

2010 2017

Process technology 40 nm

10 nm, high

frequency

10 nm,

low voltage

VDD (nominal) 0.9 V 0.75 V 0.65 V

Frequency target 1.6 GHz 2.5 GHz 2 GHz

Double-precision fused-multiply

add (DFMA) energy

50 picojoules (pJ ) 8.7 pJ 6.5 pJ

64-bit read froman 8-Kbyte

static RAM (SRAM)

14 pJ 2.4 pJ 1.8 pJ

Wire energy (per transition) 240 femtojoules (fJ )

per bit per mm

150 fJ /bit/mm 115 fJ /bit/mm

Wire energy (256 bits, 10 mm) 310 pJ 200 pJ 150 pJ

Figure 1.3: Predicted scaling cost in 2010 (45 nm)
for 2018 (10 nm). From [4]

this leads static power to be dominant in nodes smaller than 90 nm [2] and to increase
for each smaller node (Figure 1.2). Moreover, although reducing transistor leads to
gain in dynamic power, wire cost is not scaling down with the same tendency. Copper
resistivity remains constant and data transit over long wires still stands as the main
power sink in every design, especially when memory is on a chip of its own. This is
shown in Figure 1.3 dating from 2011 that forecast this difference in power reduction
from computing complex operations compared to transmitting that will expand four
times between 2010 and 2017.

Another problem linked to miniaturisation is Dennard’s scaling [5]. It states that
as transistors shrink, their power density remains constant. This was true from 1974
to approximately 2006. At that point, power density started to increase and it ulti-
mately limited frequency increase. Indeed dynamic power is determined by two main
factors which are the voltage and the frequency (Equation 1.1). Voltage is fixed by
the technology and cannot go below the threshold voltage plus the line loss. C is
the parasitic wire capacity swung at every clock cycle and is also a fixed parameter
of the technology. So we can only play on the frequency but as we want the most
performance, we tend to push it to the maximum acceptable limits by the design, i.e.
the maximum power we can either deliver or dissipate. As power density increased, it
soon started to be impossible to rise frequency without damaging the circuit hence a
frequency saturation from 2005 as shown in Figure 1.4. These technology problems
are physical limits that cannot be broken without a new disrupting technology such as
optronic or spintronic that could leverage them. It also led to the famous expression
by Herb Sutter: “The free lunch is over” [6].

Pdyn =CV 2 f (1.1)
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Figure 1.4: Evolution of CPU frequency over years.
From [7]

Figure 1.5: Power density evolution.
From [2]

1.1.2 Architecture improvements
Industry now faces a double challenge, the impossibility to increase working fre-
quency and the increase in leakage current when moving on to more advanced nodes.
To keep performance development in their chips, industries introduced multiple
workarounds: Single Instruction Multiple Data (SIMD), multicore and Out of Order
(OoO). First, SIMD CPUs were developed to treat multiple data in a single instruction
using vector larger (128 bits or more) than the base register (32 or 64 bits at that time).
SIMD exploits intrinsic Data Level Parallelism (DLP) in applications. The widest SIMD
processor supports up to 512 bits vectors. Secondly, multicore designs permit two
independent instruction flows to execute concurrently although they share some
hardware, especially memories above L2 or L3 and buses. In some recent commer-
cial chips, up to 64 cores can be used in parallel [8]. Third, OoO CPUs introduction
improved compute unit use and reordering of instructions allowed CPUs to mitigate
memory timings on independent data paths. With multiple compute units available,
processors are said to be superscalar, i.e. capable of executing multiple instructions
simultaneously. These three improvements however reached the limit to their com-
puting performances due to power constraint, and insidiously led to the apparition
of dark silicon [9]. This happens when complex circuits cannot be fully powered
permanently or simply overheat and need to dynamically choose which part to power
or to adjust either voltage or frequency using Dynamic Voltage and Frequency Scaling.
The latter was adopted by the industry because it allowed more flexibility and less
stuttering in data streams. An example is given for Intel multicore chips and the use of
SIMD extensions in Figure 1.6. Dark silicon reveals the low energy efficiency of these
designs.

Not only those improvements are not sustainable in the long term, they also put
pressure on other system components, typically on the memory system (Figure 1.13).
For SIMD, memory now has to serve request up to 512 bits instead of scalar data of
32 or 64 bits. Caches are designed to respond swiftly to these requests but when they
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Figure 1.6: Frequency scaling of an Intel Xeon Silver 4116, a 12 cores chip, function
of active cores and active SIMD extension. From [10]
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Figure 1.7: CPU and memory performance trends (from [11])

would have to serve only a single data, they now have to load large batch of data which
increases their power consumption. As vector CPUs treat batch of data, which is now
the size of a cache line, caches experience a high miss rate putting more pressure on
the slower DRAM which becomes the von Neumann bottleneck. This is worsened by
multicores because each core will request data to DRAM that the L3 cache cannot
store due to its limited capacity. So now, DRAM has to deliver data to several cores
simultaneously instead of just one. Each core having its own data set, data locality
is reduced which also impacts caches and DRAM performance. This is illustrated in
Figure 1.7 where performance of CPUs increase faster than which of memories leading
to a performance gap between the computing and the memory systems. This is what
is called the memory wall, because the memory cannot deliver data fast enough and
the CPU just waits doing nothing. Note that above DRAM, Hard Disk Drive (HDD)
and Flash disks have long been surpassed and cannot compete in terms of bandwidth
with the need of modern CPUs nor of DRAMs.

To keep increasing throughput and energy efficiency, Graphic Processing Units
(GPUs) were pushed in. They use Single Instruction Multiple Threads approach, i.e.
different threads all executing same instruction on different data with predicates to
allow branches and conditional execution to occur. It heavily simplifies the internal
design of the processing elements making them more compact so that thousands can
be put on a single chip. This benefits to application with heavy DLP such as filtering
an image where the same operation is carried on all pixels with conditional code to
handle edge cases. GPUs come with their own main memory, nowadays of type High
Bandwidth Memory (HBM) with 256 bits IO and high bandwidth. They also have
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their own internal caches with 2 levels of cache. Nonetheless, initial data transfer
from system main DRAM memory to GPU’s memory must still take place before the
algorithm runs and data must be sent back once it is done. This back and forth can
end up representing more than 90 % of the total execution time depending mainly on
the algorithm complexness and the data set size [12]. Overall, GPUs work pretty well
on the same regular access patterns as CPUs. They also provide similar program flow
with a wide range of complex instructions. Their massive parallelism is used to build
some of the Top500 supercomputers [13, 14].

However, both CPUs and GPUs are very generic and can be considered as swiss
knives of computing. They do the job but not in a very efficient way except for regular
linear access patterns. To improve energy efficiency and throughput, co-processors
dedicated to specific tasks were designed, most common one being the Digital Sig-
nal Processor for embedded systems with real time constraints. Unfortunately, the
need for more, better and greener computing requires flexibility that these extra co-
processors do not offer. Field Programmable Gate Arrays (FPGAs) are yet another
possible mean to gain extra performance by allowing CPU to turn part of itself into a
highly energy efficient application specific accelerator and bridge the gap between
flexibility of use and efficient designs. Their programmability combined with their
natural energy efficiency makes them suitable candidates for use as co-processors.
They come with their own memory in the form of Block Random Access Memory
(BRAM) with wide IO to feed their natural data level parallelism. Unfortunately, these
BRAMs still need to be filled from another external memory which is often DRAM,
but FPGAs do improve energy efficiency. So the main problem of memory wall is
still there for initial and final data transfer, just like for GPUs. Another step further is
using Application Specific Integrated Circuit, which are fixed designs but with even
better energy efficiency and throughput than FPGAs, but once again, the memory wall
remains.

All these hardware solutions are to boost classic algorithms performance but there
was also the breakthrough of new algorithms in the last decade, mainly Artificial
Intelligence (AI) with neural networks. AI is a solution to treat massive amount of data
and extract meaningful tendencies but it comes with its own data that are the neurons
parameters which can also be counted in billions for some networks. Aforementioned
hardware solutions can all improve neural networks performances but all end up
hitting the memory wall.

The race for best performances, although a great source of hardware improvements
such as branch predictors, prefetchers and so on, induced a rising complexity of
CPUs that led to some security flaws [15]. But it also drives for more power and
ironically reduces energy efficiency [16]. The industry focused on instruction cen-
tric paradigm where everything was done to increase throughput of instructions,
measured in Instructions Per Cycle. But when looking at the energy bill of simple
instructions (Figure 1.8), we see that this is not very efficient as most of the energy
comes from moving the data around. With the introduction of big data and artifi-
cial intelligence applications that uses huge batches of data, this calls for a shift to
data centric architectures to solve all the two major challenges : the von Neumann
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Figure 1.8: Instruction energy breakthrough along with some energy consumption
of common instructions and memory accesses. From [17]

bottleneck aka memory wall and the energy wall or dark silicon.

1.1.3 Socioeconomic impacts
This changing paradigm is in accordance with the evergrowing need for greener
computing and better energy efficiency in data centres. High Performance Computing
(HPC) centres are reaching tens of megawatt of power consumption which is the
equivalent of a 20000 inhabitants city [13]. Another important point is the economic
cost of moving to more advanced nodes which grants no more benefits due to the rising
cost of state-of-the-art technologies presented in Figure 1.9. As shown in Figure 1.8,
the best way to reduce energy consumption is to minimize data movement. This can
yield performance improvement per the vector nature of memory computing and by
the suppression of costly back and forths data movements. Moreover, it can alleviate
the energy wall problem by reducing the performance and energy constraints put on
the CPU.

Up to this point, we have presented the global context and the challenges facing the
semiconductor industry for the following years: no more possible scaling, no more
power and a growing need for more energy efficient computing. These challenges
call for either a shift to different technology or to rethink the architecture of systems
to better use them. In the following section, we present the standard memory
technologies and the emerging memories that appeared in the last decade.

1.2 Memory technologies
Previous section dealt mainly with CPUs which is the core of computing systems. We
have shown that instruction centric architectures faced a soon to come dead end due
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Figure 1.9: Cost of chips and investment needed for the founder. From [18]

to energy and memory walls. This section introduces main memory technologies
such as Static Random Access Memory (SRAM) and Dynamic Random Access Memory
(DRAM) but also persistent storage to give the reader a broad range of possibilities and
perspectives with their associated limitations which represent a major challenge in
the data movement cost. Emerging memory technologies including Resistive Random
Access Memory (RRAM) or Phase Change Memory (PCM) are presented along with
their remaining challenges to make them viable economically and offer substantial
benefits for system architects over conventional memories.

1.2.1 Main memory technologies
The main memory technologies are the most common ones that can be found in
any consumer device. They are the most mature ones and present in the market for
decades. However they have some intrinsic design flaws such as high leakage (whether
dynamic or static power) or very high latency for non volatiles ones.

1.2.1.1 SRAM

Static Random Access Memory (SRAM) is a fast memory used in almost all existing
CPUs dating back to 1964. It provides an extremely fast memory whose working clock
frequency is above 1 GHz with virtually infinite endurance. The circuit diagram of a
six transistors SRAM bitcell is shown in Figure 1.10. It is made up of two head to toe
inverters and two access transistors. Read operation is performed by first precharging
the bitlines to Vdd

2 , then by activating the two access transistors and using a Sense
Amplifier (SA) at the bottom of the bitlines to minimize the error margin. Write
operation is done similarly by forcing the data on both bitlines which will switch the
state of both inverters. However, the inverters are not perfect and leak, so the SRAM
bitcell presents a high static power consumption. It is often arranged in large array, up
to 8192 wordlines or bitlines which increases the dynamic consumption due to the
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WL WL

BL BL

Figure 1.10: SRAM bitcell circuit diagram

large capacitance of the lines. To reduce dynamic switching power, bitlines are often
split in local groups with access transistors to commute global bitlines.

Per se, the 6T bitcell is a 1 read-write (1RW) bitcell, which means that it can either be
read or written once per cycle. SRAM bitcell have a large diversity as it also exists in 8T
up to 16T. These extra transistors allow to add isolation between the bitcell and the bit-
lines so that read or write to several bitcells on the same bitline can occur concurrently.
This is used to add more access port to the memory to make 1R1W, 1R1RW and even
2RW bitcells. Literature also shows that 6R6W bitcell is possible [19]. SRAM bitcell
can also be used as Content Addressable Memory memory that is commonly used in
routers. Finally, as it is made up of six transistors, it has a very low density that does not
allow to have large SRAM memory bigger than a few megabytes. What makes SRAM so
interesting is that it is a CMOS circuit that can be incorporated directly in chips design
and scales down along with the technology. It is used as cache or scratchpad memory
and is often tightly coupled to CPUs as it is the only memory to keep up the pace
with high frequency. Other uses include small buffer memory in devices like HDD,
Flash drives or anything that needs few amount of memory before transmitting over
serial bus or medium that requires serialisation, e.g. radio transmission. Its flexibility
allow designers to easily use custom SRAMs with wide IO or even asymmetrical IO
(for serialisation for instance) as well as odd row number.

1.2.1.2 DRAM

Dynamic Random Access Memory (DRAM) is the main memory in non embedded
systems such as desktops, servers, HPC and even in some embedded systems like
autonomous cars. It features an infinite endurance with medium speed (relative to
SRAM) while having a very high density. Figure 1.11 shows the circuit diagram of a
DRAM bitcell. It is composed of an access transistor and a capacitor to store the data.
This capacitor is leaking so it needs to be refreshed periodically, hence the dynamic in
the name. This leaking along with the refresh operation cause this memory to have a
high dynamic power consumption even when the memory is idle. Read is performed
by precharging the bitline to Vdd

2 and then by activating the access transistor. The
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Figure 1.11: DRAM bitcell circuit diagram

capacitor then discharges or charges the bitline and a SA catches the difference. Read
is thus destructive as the capacitor shares its charge with the bitline and the original
data needs to be restored. Write is simply done by activating the access transistor and
pulling the capacitor to the desired voltage (high for 1, low for 0).

To prevent the whole memory from being inaccessible during a refresh, DRAM is
organized in ranks subdivided in chips and in banks. Banks are split across several
chips for parallelism reason. Each bank is itself partitioned in subarrays which contain
the wordlines and bitlines. Wordlines are referred to as logical rows that spans several
chips while bitlines are logical columns. Columns are muxed in a similar fashion to
SRAM. To read or write, a DRAM row must first be activated, i.e. selected, it is then
loaded in the row buffer where read and write take place for faster operation. In
particular, burst mode allow several operation to contiguous addresses to happen
with a single command and fully benefit from the row buffer. When all operations
on the current row are done, either a different row within the same bank can be
activated or a row in a different bank is selected. The former bank must first receive
a precharge command to reset bitlines to Vdd

2 to minimize leakage before activating
a row in another bank. When a row is closed, the row buffer is written back in place
to restore data. Refresh affects a whole bank at a time and makes it unavailable until
it is finished. The addressing scheme vary from chip to chip but it is mainly column
first then bank then row as shown in Figure 1.12. Above ranks are channels which are
physical buses and may be shared by several DRAM devices. Addressing schemes can
also be interleaved or with some XOR between some bits to increase row-hit rate.

Banks are the physical output and have 8 bits IO. To have a 64 bits IO, 8 banks are
disposed in parallel. The complicated rules and state machine to handle DRAM com-
mands and its dynamic nature requires complex designs to ensure correctness. That is
why CPUs have a portion of their area reserved for DRAM scheduling (see Figure 1.14b).
However, DRAM’s high density with its intermediate speed and high bandwidth makes
it a suitable choice to fit between long term but slow storage and SRAM’s high speed
but low capacity. To answer the growing need for bandwidth, manufacturers have
developed HBM that uses 3D stacking and have very wide IO (256 bits) compared
to DRAM standards. Both are standardised by the JEDEC committee which makes
DRAM a somewhat rigid memory format. Due to the complex state machine needed
to respect timings and transitions, DRAM has a latency that can greatly vary between
20 ns to more than 400 ns. Finally, DRAM suffer from write disturb. Continuous write
to the same row and bitcells by alternating activation, write and precharge leads neigh-
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Figure 1.12: Example of a DRAM addressing scheme

bouring cells to be affected and even flipped due to parasitic capacitance between
lines. The row hammer attack exploits this vulnerability [20]. Smaller nodes have
more parasitic capacitance which augments this risks but also increases the leakage
and reduces the stored charge which induces more refresh and more unavailability.
As such, DRAM is limited in scaling and faces its own technological challenges.

1.2.1.3 Hard disk and tapes

HDDs and tapes are the most ancient forms of digital storages that are still in use today.
They are also the only form of modern storage to use mechanical parts, i.e. an engine,
incorporated for HDDs and external for tapes, to spin the disks or roll up and unroll
the tape. As such, they require a vibration free environment to be used safely. Shocks
may damage data permanently, especially for HDDs and make the device completely
unusable. Both HDD and tape have a high data density, not necessarily in surface
but more in volume as disks can be easily stacked and tape film is really thin, around
10µm. Largest commercial HDD is around 15 TB while tape goes up to almost 500 TB.
The main cons of these technologies is obviously their very high latency around 10 ms
for HDD while tape can go anywhere between one second to more than a minute
depending on how far on the tape the data is. Main use of tape includes long term
storage such as archiving or data back up for companies. One of unthought advantage
of tape is being offline storage which protects data from online attacks. Endurance of
both storages is not really a concern as mechanical parts wear out before it is reached.

1.2.1.4 NAND Flash

NAND Flash memory is the most common type of non volatile memory. It is more
recent than SRAM and DRAM but the absence of mechanical parts allowed it to be
used in numerous devices thanks to its non volatility. It is used in SD memory cards,
USB sticks, smartphones and Solid State Drives (SSDs) for the most common devices.
NAND Flash is made up of a single transistor with a floating gate which stores the
information by retaining the charge after power down. Read is simply done by sensing
the current flowing in the channel whereas write is more complex and requires several
steps. First, due to how NAND Flash is built to maximize density, it is organised in
blocks that cannot be written word per word but only as a whole. This means that
even for changing a single bit, a full block must be written. Moreover, write operation
requires the block to be erased before so data must first be read to keep non modified
data intact. A block is typically around 512–4 kB.

The advantages of NAND Flash are its non volatility with high shock resistance
thanks to no mechanical parts compared to HDDs or tapes. Besides, it has a very
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Figure 1.13: Memory hierarchy in a conventional system. In server or cluster, DRAM
and mass storage may be distributed or remote.

high density in comparison to SRAM and DRAM. NAND Flash indeed supports 3D
stacking and most recent chips have up to 176 bitcells stacked [21]. This allows to
have a virtual footprint of less than the theoretical minimum of 4 F2. Moreover, each
die is also vertically stacked with up to 16 other dies in a standard commercial SSD.
This sums up to density superior to 100 Gbit/cm2. On the other hand, NAND Flash
is quite slow in regard to previous volatile memories. Its read speed is around 1 GB/s
but its write speed is 5 times slower around 200 MB/s due to the erase operation. The
main disadvantage of NAND Flash is its latency around 10µs for reading which makes
it around 100 times slower than DRAM. For writing, latency around 100µs can be
expected. These high latencies are due to the high voltage required to operate on the
memory array, up to 15 V which takes some time to reach.

When people talk about memory, they often mention capacity, density and band-
width but they rarely talk about endurance and persistence. Writing in NAND Flash
requires high voltage which ends up damaging the cell after many programming cycles.
This means that a NAND Flash has its lifetime determined by the write bandwidth and
the capacity. To circumvent this problem, industrials added more memory to devices
to be used when a block is failing. Commercial devices may have up to 20 % of extra
memory. Another technique used is wear levelling. This allows to dynamically remap
some blocks onto others to even the number of writes across the device. It also pro-
tects against write attacks aiming to destroy data by wearing out SSD prematurely. To
manage wear levelling, NAND Flash devices embed a controller with their own SRAM
memory that also allows to perform some operations on data. Finally, to speedup
writes, SSDs may embed some DRAM to act as a write buffer but this is only effective if
the amount of data is lower than the buffer size. Scalability is also a concern for NAND
Flash as the high voltage needed to write the cell constrains the transistor size and
limits the downscaling.

1.2.1.5 Current memory hierarchy

On one hand, CPUs need a working memory to store their temporary data. This mem-
ory can be a SRAM for small microcontrollers or DRAM for larger processors. On the
other hand, a permanent storage is required to store programs and associated data. It
is often made with NAND Flash or HDD. As explained in Section 1.1.2, processors have
seen numerous architectural improvements to boost their performances. However,
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Table 1.1: Main memories key parameters. Data is from [22, 23].

Price ($/GiB) Density Latency Bandwidth Persistence Largest size

SRAM 5000 120 F2 or 2 Gbit/cm2 1–5 ns 1 TiB/s 10µs (Power off) 10–100 MiB

DRAM 20 8 F2 or 25 Gbit/cm2 20–400 ns 10–100 GiB/s 64 ms 100–1000 GiB

Flash 4 <1 F2 or >100 Gbit/cm2 1–10µs 1 GiB/s 10–20 yr 10–100 TiB

HDD 0.1 100 Gbit/cm2 5–20 ms 100 MiB/s 10–100 yr 10–100 TiB

Tape 0.01 49 Gbit/cm2 1–100 s 300 MiB/s 100+ yr 100–1000 TiB

memories did not keep up the pace and, as a result, intermediate memories known as
caches were introduced to mitigate timings. If we take a desktop or server CPU, its
working frequency is around 3 GHz so it needs a memory to be the fastest possible
to not waste clock cycles waiting for data. This is the goal of the L1 cache made in
SRAM which is around 16–128 kB and usually have a latency of around 1–3 ns. To
be able to serve an instruction and a data at once, there are often two L1 cache, one
for instructions and one for data. To bridge the latency and capacity gap with the
main DRAM memory, a L2 and a L3 caches were introduced. L2 has a capacity of
128–1024 kB and a latency between 5–10 ns while L3 can be up to more than 50 MB but
with a higher latency around 20–50 ns. In rare cases, a L4 made from embedded DRAM
can be present. We now have the complete modern memory hierarchy as shown in
Figure 1.13. Three caches, one or more external DRAM chips and a, possibly remote,
permanent mass storage. All these memories end up eating most of the available area.
Figure 1.14a shows a 130 nm Intel Pentium M from 2005 where memory represents
more than 60 % of the chip area, so this tendency is already decades old. A more recent
processor (Figure 1.14b), a 2015 22 nm Intel Haswell shows a similar area distribution
including complex DRAM controller taking the same surface as 2 or 3 cores. That is
why new emerging non volatile memories with much better integration and higher
density can be of great help. A summary of main memories parameters is presented
in Table 1.1.

1.2.2 Emerging non volatile memories
Emerging NVMs are a group of recent (namely 2010 and later) memory technologies
that offer promising performances, density and scalability. From an electrical point
of view, they all share the same characteristics. In previous memories, such as SRAM,
DRAM or NAND Flash, the physical property used to store data is the charge of the
bitcell. These charges are maintained through power supply and are gone when the
power is shut down (except for NAND Flash). In the case of resistive memories, the
physical property used to retain data is the resistive state of the bitcell. This resistance
changes depending on the current that flows through the bitcell, but the underlying
phenomenon depends on the technology. These emerging NVMs provide a huge
benefit compared to SRAM and DRAM especially, because it eliminates the need to
have several of current levels of memory in the hierarchy. As such, it would make
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Figure 1.14: Die photographs

a big leap forward if it would allow to suppress the L3 cache, the DRAM and also
the main storage (either spinning HDD or SSD). The introduction of NVMs would
thus potentially replace 3 levels of the memory hierarchy into only one, leveraging
huge gains in power consumption, timing (latency and bandwidth), density and
silicon area. Another possible use is as Storage Class Memory (SCM), which is a
class of intermediate memory between DRAM and NAND Flash, in terms of latency,
bandwidth and energy.

The gains in power consumption must however be tempered. As of today, reading
these NVMs may be cheaper than reading DRAM, but the write operation can be
extremely costly depending on the considered technology. There is no static power
compared to SRAM nor dynamic idle power compared to DRAM which make these
memories more energy efficient. But if they are to replace SRAM, as of today, it would
increase power consumption for this specific use with high bandwidth requirement.
The gains in latency are also to be nuanced due to the write asymmetry where the write
operation can take up to 10 times longer than the read operation which is problematic
in a system point of view. To ensure system responsiveness and guarantee perfor-
mances in all use cases, write asymmetry still needs to find workarounds. However, as
these are non volatiles, it suppresses the refresh operation that can hinder the access

15



1 Introduction & Contextualisation – 1.2 Memory technologies

LRS HRS

(a) Low On/Off ratio, narrow
distribution

LRS HRS

(b) High On/Off ratio, wide distribution

LRS HRS

(c) Low On/Off ratio, wide dis-
tribution

00 01 10 11

(d) High On/Off ratio, narrow distribution and multilevel cell

Figure 1.15: Different RRAM resistance probability distribution. Orange hatched
( ) denotes state intersection and should be avoided at all cost.

timing on DRAM. Another issue is that timing operations are usually better than at
least DRAM, but not of SRAM.

As said earlier, the resistance is the physical property used to store data. We call Low
Resistive State (LRS) the logical 0 and High Resistive State (HRS) the logical 1. The ratio
between HRS and LRS is called the On/Off ratio and determines the precision of the
SA, the working frequency and if multilevel cells can be used. Unfortunately, contrary
to electrical charge, resistance cannot be controlled accurately and follows a normal
or log-normal distribution as shown in Figure 1.15. A narrow distribution with a high
On/Off ratio is the best case as both state can clearly and easily be distinguished and
may even allow multilevel cell (Figure 1.15d). The worst case is a low ratio with a wide
distribution where some LRS cells might have a higher resistance than some HRS cells
(Figure 1.15c). In this case, either error correcting code can be used but this requires
more space and may fail if the distributions are really bad, or write verify loop to make
sure the cells end up in a distinguishable state but this is non deterministic and write
may take a long time. Low ratio with narrow distribution (Figure 1.15a) and high ratio
with wide distribution (Figure 1.15b) are acceptable cases if the distributions do not
overlap.

In terms of density, these can reach the theoretical maximum of 4 F2, but it depends
on the array structure and the access device to the bitcell: none (crossbar structure),
transistor (1T1R bitcell) or back-end of line selector (1S1R) as shown in Figure 1.16. 3D
technologies can enable even higher density like Flash already offers. As technology
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Figure 1.16: Circuit diagrams of 3 different bitcell types

will mature, denser designs will ensue. For silicon area, as we can theoretically remove
the DRAM and the mass storage (whether HDD or SSD), this removes 2 external chips
from the system allowing more compact and efficient systems to be produced. With
the advance of IMC and 3D stacking, we can even dream of a all in one chip where
memory and CPU are tightly coupled [24].

There are still some work to be carried at hardware level including technology and
architecture, but on software side as well. New data structures can benefit from the
non volatility and Operating System (OS) needs to take it into account. Indeed, non
volatility ensures that data remains even after power off, nonetheless this also cause
some security threats as data will remain permanently which can include sensitive
data such as passwords. OS must take care of erasing data after deallocation which
was easier with DRAM. On the technology side, endurance for all these emerging
memory technologies remains a serious concern that prevent any to be used for their
purposed introduction. On the other hand, their integration and compatibility with
the fabrication process, depending on the material used for some memories, greatly
ease their adoption by industry and reduce the need for investment in new fabrication
lines.

1.2.2.1 RRAM

Resistive Random Access Memory (RRAM)1 is the first discovered and manufactured
type of emerging non volatile memory dating back to the 1960s but it only attracted
attention in the 2000s when it was made with back-end of line compatible materials.
Although in its general form RRAM embraces all resistive memories including PCM
and MRAM, we discuss in this section only about Oxide Random Access Memory
(OxRAM) and Conductive Bridge Random Access Memory (CBRAM). In the literature,

1 ↑RRAM® is a registered trademark in Japan and EU until 20/02/2023 [26]. ReRAM is also encoun-
tered in the literature.
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Figure 1.17: Different types of RRAM bitcell. Taken from [25]

RRAM are sometimes referred as filamentous RRAM. Indeed, these technologies
rely on a Conductive Filament (CF) inside an insulating material. OxRAM depends
on oxygen vacancies as filament while CBRAM uses metal ions (Figure 1.17). Set
operation is performed by applying a positive voltage across the device and reset
requires a negative voltage. This means that the selector cannot be a one way device
such as a diode and also slightly complicates write drivers to be reversible. Access
device can thus be a single transistor, an Ovonic Threshold Switch or none at all in a
crossbar array structure (Figure 1.16a).

It is often made from HfO2 which is a high-k dielectric (highly insulating) used
in transistor to make smaller grids and thus RRAM is easily integrated in current
fabrication lines. With a crossbar array structure, it should be the most dense on-
chip memory available, excluding 3D stacking technologies. It is aimed to replace
potentially SRAM in higher level cache, typically L3 [27] while L2 and L1 are expected
to remain with fast SRAM memory. Nonetheless, there are still challenges to reach
these goals with serious reserves on endurance and variability within an array.

First of all, RRAM requires higher voltage and current than conventional SRAM to
form and reset the CF. It requires bigger transistor to drive enough current (up to
100µA). Higher current also means it is harder to shrink the pitch of the metal between
lines due to IR-drop effect. Cycling between forming and resetting the CF ends up
damaging the cell with micro cracks or migrating material (oxygen or metal) cemented
up to the point where the cell is stuck in either LRS or HRS. Current technologies
have an estimated endurance between 10 million to a billion cycles [28, 29] which
is way too low for caches memory or even DRAM where the write bandwidth can be
over a billion writes per second. Wear levelling techniques must be used to mitigate
these bandwidth and equalize the wearing out on all the bitcells which slows down
the working frequency of RRAM.

RRAM has a medium On/Off ratio often combined with wide distribution (interme-
diate between Figure 1.15b and Figure 1.15c) which makes reading slower to ensure
the state of the bitcell. Another problem is the drift associated with the repeated
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Figure 1.18: Different types of PCM bitcell. Taken from [25]

read/write cycle. Both LRS and HRS distributions will shift independently for each cell
meaning that some cells will have a worsened ratio while others will see it improves
across the lifetime of the cell. Worsened ratio may overlap distribution rendering the
cell useless which can be alleviated with wear levelling to move data to extra bitcells.
Some array structure such as 2T2R [30] can be used to lessen low uniformity issues.

Overall, RRAM still has a promising future with write currents going down around
1µA, reading and programming times lower than 10 ns and a retention time of at least
10 years. Endurance above 1012 cycles have been reported [31] although it is still a little
too low for integrated cache memories. Power density due to higher write currents
may also be problematic for some power constrained applications. Highest On/Off
ratios are between 100 and 1000 which permits 4 level bitcells (2 bits) [32].

1.2.2.2 PCM

Phase Change Memory (PCM) is another type of resistive memory relying on the tran-
sition between amorphous and crystalline phase of a material, usually a chalcogenide.
These two phases have greatly different electrical resistance which is used to store
data. HRS corresponds to the amorphous phase, whereas crystalline is LRS. The reset
operation consists of sending a burst current to melt the material and let it cool down
to reach the amorphous phase. Set is done by sending a smaller current than reset
and let the material slowly crystallize. Set operation is thus seemingly slower than
reset. Contrary to RRAM, current is one way only as it is only used to heat the material
so the selector can now be a diode which is slightly more compact than a transistor.
Unfortunately, the high temperature needed to melt the material requires high current
for a short amount of time which makes writing an high power operation. Current
used to be over 1 mA and has now decreased to 250µA with voltage around 3 V [33]
similar to RRAM. Moreover, high temperature limits the density to prevent a write to
disturb neighbouring cells. Multiple designs coexist such as mushroom or pillar type
as shown in Figure 1.18, depending on the materials used.

19



1 Introduction & Contextualisation – 1.2 Memory technologies

Free Layer

Oxide Tunnel Barrier

Pinned Layer

In-Plane MTJ

(a) Plane MRAM bitcell

Perpendicular MTJ

Free Layer

Oxide Tunnel Barrier

Pinned Layer

(b) Perpendicular MRAM bitcell
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Similarly to RRAM, PCM is subject to endurance issues that are even worse due to
thermal expansion. It either creates voids in the cell until it gets stuck open or, due
to melting repeatedly, have material migrating and forming a permanent conductive
wire. Current technology has endurance between 1 million and a billion cycles [33–35],
which is better than most recent SLC NAND Flash. This is enough to replace the
former in fast permanent storage as SSD. Although heating and cooling down the
material takes time, it is still faster than Flash with write timings of 100 ns and even
less reported [33]. Given its better performance compared to Flash, PCM was the first
NVM sold in consumer electronics by Micron and Intel under the Optane brand name
with their 3D XPoint technology. Its On/Off ratio is also way better than RRAM up to
104 allowing multilevel cells to be used with 3 and even 4 bits [36]. Indeed, precise
control of current and timing during pulse gives highly repetitive resistance output in
contrast to RRAM which has very wide resistance distribution.

In perspective, PCM is planned to replace DRAM [34, 35, 37–39] in computing sys-
tems if its endurance is high enough. Otherwise, its use as SCM has already began
with Intel and Micron 3D XPoint technology. Read timings are in the tens of nanosec-
ond and write in the hundreds of nanoseconds. Write power is of concern due to
high drive current which makes it the most energy consuming memory to write a bit
with 10 pJ/bit whereas RRAM is around 100 fJ/bit and SRAM is even lower. Density is
limited due to thermal constraint but this is partially circumvented with 3D stacking.
Retention time is above 10 years thanks to the material stability in both phases. How-
ever, resistance drift due to thermal dilatation and cycling can be a problem in the
long term for multilevel cells.

1.2.2.3 MRAM

Magnetic Random Access Memory (MRAM), and more specifically Spin Transfer
Torque MRAM (STT-MRAM) is yet another kind of resistive memory using the mag-
netic orientation of a Magnetic Tunnel Junction to store data. A free layer that can take
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Table 1.2: NVMs parameters. Data collected from [25, 28, 33, 43–45]

Cell Size Multibit Read Time Write Time Write Energy (/bit) Endurance

RRAM 4–12 F2 2 ∼10 ns 10–50 ns 0.1–10 pJ 106–1012

PCM 4–30 F2 4 10–60 ns 20–150 ns 10–500 pJ 107–1010

MRAM 6–50 F2 2 2–35 ns 3–50 ns 0.01–1 pJ 1012–1015

two different orientations and a fixed reference layer separated by an oxide barrier
make up the bitcell (Figure 1.19). If the layers have the same direction, the cell is in a
LRS and if they have opposite direction, then it is a HRS. Set is performed by sending
a current pulse in the wanted orientation and reset is done by reverting this current
pulse. Just like RRAM, write drivers must thus be reversible and this constrains the
device selector as well. Contrary to PCM, it does not require a lot of power to switch
state with current in the range of 100µA and write timing inferior to 10 ns [40, 41].
Endurance is the best advantage of MRAMs as it does not suffer from any thermal di-
latation or high current going through the cell. Estimated cell endurance are over 1012

cycles [25]. Voltage to operate the cell is also lower compared to previous memories
and within 1.5 V, there also reducing constraints on transistor size.

Unfortunately, magnetic materials required for the fabrication process are not
compatible with conventional CMOS technology which is still a problem to be solved.
Magnetic nature of the bitcell requires the storage to not be in a magnetic environment
that may disturb cells’ data which can limit the use for some applications. Heat is
also a limitation to the use of this memory in non controlled environment as it largely
reduces the data retention time. Finally, MRAM yields a low On/Off ratio with a narrow
distribution which makes multilevel cell harder to achieve, but not impossible [42].
3D stacking is still a work in progress [40] and should help improve the relatively
low density compared to RRAM or PCM [43]. Small nodes may also be problematic
due to magnetic field interference between cells. As such, MRAM is planned to be a
medium density memory compared to RRAM but its high speed and low power makes
it a suitable candidate to fully replace SRAM in cache memories thanks to its high
endurance [41, 43].

Emerging memory technologies have intermediate energy and timing between
either SRAM or DRAM and Flash. Non volatility removes static and dynamic power
consumption in the bitcell array which greatly improves energy efficiency. They
can replace several memories in the system, mainly DRAM as it is the most power
consuming one as well as the higher level cache. Non volatility also allow Flash
replacement and better system integration. Another possibility is their integration
as SCM in between DRAM and NAND Flash. However, they have limited endurance
that is too low to consider a full replacement as of today. Having a permanent storage
tightly coupled to CPU will cut down power loss over transmission line instead of
having multiple chip connected on a system bus. A summary of their characteristic
is given in Table 1.2.
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1.3 A new computing paradigm
Now that we have introduced old and emerging memory technologies, we need to
explain why we need to revisit the standard architecture model to fit the new needs of
the industry. As we have seen, current memory technology are not really scalable with
permanent storage being done with spinning HDDs and tapes which both have very
high latency, low bandwidth and use mechanical parts that are more prone to failure.
Although both have seen tremendous improvement for data density, their high latency
and low throughput make them unsuitable for future high demanding uses. We first
introduce the rising demand for high throughput data treatment (big data) with the
use of AI, then we discuss the challenges this trend faces and raises and finally, we
introduce a proposed solution that is IMC.

1.3.1 Big Data
Since 1980, data storage has substantially increased and doubles every 40 months [46]
which is an exponential growth as shown in Figure 1.20. This trend is still valid as of
today but what changed is how this information is treated. What started with high
density information, mostly sensor data, is now a sea of low density information which
we need to extract the valuable droplets from:

• In finance, data now comes from stock variations but also analysis of political
discourses, behavioral analysis, press text analysis to predict the most accurately
how the stock will evolve;

• In social networks, text analysis, photo recognition, graph analysis and behav-
ioral analysis all require huge amount of data (and tracking);

• In informatics, database search, insertion and deletion are recurring operation
that are lengthy on terabytes dataset;

• In science, it includes: meteorology with the multiplication of sensor data and
higher precision with models containing billions of nodes; biology with DNA
analysis and pattern matching for protein modifications research; astrophysics
where telescopes’ data are harvested faster than they are treated leaving huge
untreated databases even after telescopes retirement; subatomic physics such
as particle accelerator that can generate terabytes of data in a second; medicine
that has very wide input dataset to look for correlation between lifestyles and
diseases; etc.

All of these are the consequences of the shift from industrial society to information
society where data is the new colorless gold. With the IoT, it will be further exacerbated,
but thankfully only 2 % of data is stored [47]. These new data as listed previously are
of great volume, vary largely in quality and type, are generated quite rapidly and thus
demand a fast treatment.
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Figure 1.20: Quantity of data created per year. Only 2 % is stored, rest is treated then
thrown away. From [47]

Not only data quantity increases as well as its diversity, algorithms also evolved
with more complex access patterns. Graph processing with bunny hopping from
node to node are not predictable in their patterns and prevent any form of caching
relying on spatial locality. These irregular access patterns increase stress on memory
systems. Improvements in image processing led to stride access patterns where only
part of data is used in a regular way. But memory must still serve the full data to
accommodate caches leading to underutilisation of the ideal bandwidth. Combining
this with stencils application such as convolution used in filtering where data is
accessed in subpart of the total also decreases temporal locality with nowadays high
resolution pictures. All in all, we face an absurd amount of data whose algorithms
needed to manage them have complex access patterns reducing the effectiveness of
cache techniques. This forces data to be read and evicted from caches multiple times
increasing the energy and timing cost.

1.3.2 Proposed solution : memory computing
In this data intensive world, we have to treat data in an energy efficient way and with
high throughput. Standard computer architecture is compute centric rather than
data centric; it is built in order to execute the maximum number of operations in
the shortest amount of time but that does not equate to faster data treatment due
to memory hierarchy and its intrinsic latencies and limited bandwidth. Data centric
architecture is all about treating a massive amount of data in a parallel fashion while
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Figure 1.21: Internal versus external memory bandwidth. From [48]

compute centric is about controlling the program path and needs the data to be
brought through a complex memory hierarchy designed to hinder the slow memory
timings.

The only foreseeable solution is to work at the bottleneck, i.e. the memory. As it is
the bottleneck, we cannot treat data faster than its external bandwidth and thus this
renders all cache levels and lower memories in the hierarchy obsolete. The data should
be handled where it resides, at the topmost level of hierarchy that is the permanent
storage or eventually the DRAM. A possible parallel is remote working rather than
office work where humans are data to be managed. By doing so, we remove the
morning and evening commute representing data transfer with its bottlenecks (roads,
railways, etc.), its latencies and its energy cost (electrical, gas, etc.). Another solution
is also to compute data where it is produced (local consumption) rather than to send
it to an external compute unit, whether it is local to the system or a remote server. But
this is not always applicable.

Why memory computing is a viable and promising solution? First, it removes most
of data transfers between the memory and the CPU or GPU. This yields timing and
power improvements by removing costly intermediate memories such as cache and
also slacken power constraint on the CPU (see dark silicon and heating problems in
section 1.1). Second, it takes advantage of the much higher internal bandwidth of the
memory, sometimes 100× faster than the external one (Figure 1.21). Not only this
can incidentally increase throughput but also reduce the average time of algorithms
execution. Third, it uses the full internal width of memory lines which is ranging from
100 up to 1000 larger data width, depending on the considered memory technology.

How does memory computing work? Multiples classes of solutions have been
proposed in the state-of-the-art and we can split them in roughly two groups: analog
computing in the bitcell array or digital computing after the SAs. The first group makes
extended use of basic electrical rules to compute logical operation such as NAND, OR or
XOR. It rely on the array interconnection between bitlines but is also heavily technology
dependent. More complex operations are performed through multiple successive
logical operations or with some additions to the periphery circuits. Second group adds
digital computing units in the periphery but may also use some analog pre-computing
performed in the array. Digital additions allow more complex operations such as
arithmetic ones (ADD, MUL, etc.) to be computed in place in single cycle. For a more
complete view on IMC techniques, refer to Chapter 2.

Note that memory computing is almost as old as digital computing itself. The
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Figure 1.22: Memory computing research interest in Google Scholar (from [55]).
Search term are not precise enough as they include some result from
neurology (background noise).

very first paper that can be connected to IMC dates back to 1969 and proposes to
interleave memory with logic units to compute basic logic functions [49]. It can be
considered as a common ancestor to both IMC and FPGAs. A similar proposition is
found in [50] from 1970 that introduces compute caches with search, add and scale
operations. However, the first chip implementation leaps 20 years forward with a 8 kB
SRAM prototype reaching 1.7 GOPS on a discrete cosine transform application used
in video compression [51]. Those previous papers were not introducing solution to
the memory wall as they do not mention it, nonetheless the memory wall problem
has been known for more than 25 years [52]. Already in 1994, the memory was the
limiting factor, the von Neumann bottleneck, and the authors only state that scientists
and engineers should think outside the box without providing any hint or direction. A
first attempt was designed with the Terasys array [53] with 1-bit Arithmetic & Logical
Unit incorporated into SRAM memory chip for each column. It supports basic logic
operations with distributed computing approach and their own high level language.
It reached speedup between 5× to 50× versus single CRAY core. Another nail in the
coffin is a paper by D. Patterson et al. in 1997 that reports many programs spend most
of their time waiting for the memory [54]. It proposes an intelligent RAM that is vector
computing tightly coupled to DRAM and foresees up to 4.5× better energy efficiency
compared to conventional architecture.
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Since 2010, there has been a new surge of papers on IMC or Near-Memory Com-
puting indicating a real interest in this solution in both academics and industry
(Figure 1.22). Some questions are still open in the community, concerning mainly
more software points than hardware. The programmation of these new IMC devices
and their associated Instruction Set Architecture (ISA) is for now not debated with
everyone using homemade ISAs. RISC-V may be a starting point but it is a scalar
ISA rather than a vector one (see Chapter 3 for our own). How the instructions are
sent to the device or how it is synchronized with the rest of the system is also an
unanswered question (see Chapter 4 for our approach). Coherency issues are almost
non existent in the literature although they do exist as in every unified memory
system. Overall it is how it should be integrated in a real system with a software
Application Programming Interface (API) that also has hardware implications.

1.4 Conclusion
We have shown that the global context in the semiconductor industry is close to
reach a dead end. Moore’s law is coming to an end in the next few years after more
than 50 years of continuous growth (Figure 1.1). Dennard’s law has been broken
since 2005 which led to dark silicon, i.e. part of circuit that cannot be powered due to
power constraints and heat dissipation issues. Frequency scaling has also reached a
plateau around 2005, there also putting a cap on performance for single cores (Fig-
ure 1.4). Architectural improvements were the key to performance increase from 2005
to nowadays with the introduction of multicores CPU. Wider SIMD extension also
provided some boosts to treat vectors of data which is particularly useful for the more
demanding applications of today such as neural networks. To speed these applica-
tions even more and to improve their energy efficiency, general purpose GPUs were
introduced with thousands of processing elements executing the same instructions
simultaneously. FPGAs are now common in commercial datacenter but it is more a
marketing strategy than a definitive solution. Application specific accelerators were
also designed such as Google’s Tensor Processing Unit (TPU). Finally, the rising costs
of more advanced nodes make new chips more expensive per million gates. The
technological investments required to fabricate the sub 10 nm nodes are astronomical
and leave very few foundries choice (Figure 1.9) which also increases prices. All in all,
semiconductor industry is at the end of an era after pushing everything it could to the
extreme, both technologically (smaller nodes, better materials) and architecturally
(SIMD, multicores, etc.).

All of the previous points were only tackling the problem at the compute or logic
level but never at the memory level while the memory is the limiting factor (Figure 1.7)
either in bandwidth (memory wall or von Neumann bottleneck) and in efficiency as
data transfer is costly. Recent new memory technologies such as HBM and HBM2
partly reduced the gap between GPU and memory performance, but this gap still
remains. In summary, we do not need to change how we treat the data but where
we treat it. Thus, we need a shift from compute centric to data centric architectures
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where data is the focus point rather than the processing element, especially in the era
of big data and AI. This shift should improve energy efficiency in the context of better
energy efficient systems to meet the requirements of the Paris Agreements, while still
increasing performance with a limited energy budget.

Memory computing is a promising solution to these problems. It satisfies the energy
efficiency part by removing useless caches and memories in the system. It offers better
performance in vector computing by profiting from the internal memory bandwidth.
Emerging NVM technologies offer promising performances such as better read/write
energies and faster timings. Their compatibility with CMOS process grants better
integration and higher density than DRAM. Non volatility paves the way to a unified
circuit containing memory for permanent storage and computing, all in a single chip
using 3D integration technologies. This is already envisioned in the literature as the
next leap forward [24].
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