
Résumé

Les architectures d’aujourd’hui sont basées sur le modèle de von Neumann qui place
au centre l’exécution des instructions. Ces architectures font face à de fortes limita-
tions dans le contexte du big data. En effet, le mur mémoire est un phénomène lié à
l’écart grandissant de performances entre les processeurs et les mémoires depuis les
années 80. Pour atténuer cet écart, une hiérarchie de caches a été mise en place mais
elle a en contrepartie largement augmentée la consommation énergétique sans être
adaptée pour les grands jeux de données modernes. Non seulement ces architectures
ont du mal avec une masse de données toujours croissantes à cause de leur haute
consommation énergétique et leur faible débit, elles ne peuvent plus uniquement se
baser sur les avancées technologiques pour s’améliorer. Ceci appelle à un changement
de paradigme vers des architectures data centrées où le traitement de quantités de
données massives en parallèle est le principe de base.

De nouvelles mémoires non volatiles promettent du stockage haute densité et
peuvent intégrer du calcul en mémoire. L’intérêt de calculer en mémoire est d’opérer
là où se trouve la donnée, ou tout du moins le plus proche possible, pour supprimer
les allées et venues permanentes entre la mémoire et les cœurs de calcul. Les solutions
existantes utilisent du calcul analogique très efficace mais prompt au bruit et avec une
flexibilité limitée. Quand les données doivent être réécrites en mémoire, l’endurance
de ces mémoires non volatiles n’est pas discutée. Nous concevons un emballage numé-
rique qui étend les fonctionnalités mémoire avec du calcul vectoriel et développons
une plateforme de simulation pour faire de l’exploration architecturale. Notre circuit,
bien nommé C-SRAM, peut être intégré avec la plupart des technologies mémoire et
est équipé de sa propre mémoire SRAM. Nous démontrons qu’effectuer le calcul au
sommet de la hiérarchie mémoire, c’est à dire proche du stockage permanent, permet
une réduction de la consommation énergétique d’un facteur 17.4 et une accélération
du traitement en moyenne d’un facteur 12.9 comparé à un traitement avec un cœur
SIMD. Grâce à la mémoire tampon intégrée, l’endurance de la mémoire non volatile
n’est pas impactée et de fait, l’espérance de vie du système s’en trouve augmentée par
rapport à d’autres solutions de calcul en mémoire.

Mots clés : calcul en mémoire, mémoire non volatile, architecture des systèmes, mé-
moire de classe de stockage, mur mémoire, mur énergétique, goulot d’étranglement
de von Neumann

i

Abstract

Today computing centric von Neumann architectures face strong limitations in the
data-intensive context of numerous applications. The key limitation is the memory
wall due to increased performance gap between processors and memories. To mitigate
this gap, cache hierarchy was introduced but it largely increased energy consumption
while not being adapted for modern big datasets. Not only those architectures struggle
with big datasets due to their high energy consumption and slow bandwidth, they can
no longer be improved through technological advances such as node scaling. This
calls for a paradigm shift to data centric architecture where treating massive amounts
of data in a parallel fashion is the core principle.

New emerging Non-Volatile Memories (NVM) promise high density data storage
and can easily integrate In-Memory Computing (IMC). IMC purposes is to compute
where the data is or the closest to, to suppress back and forth data movements from
the memory to the cores. Existing solutions use analog computing that has high effi-
ciency but limited flexibility. When data needs to be written back after computation,
endurance of NVM is often not discussed. We design a digital wrapper that extends
memory functionality with vector computing capabilities and develop a simulation
platform for architecture exploration. Our digital wrapper, aka C-SRAM, can be inte-
grated with most memory technologies and comes with its own small SRAM buffer.
We demonstrate that computing at the top of the memory hierarchy, i.e. close to the
permanent storage, grants in average 17.4× energy reduction and 12.9× speed-up
versus SIMD baseline. Thanks to SRAM buffer, NVM’s endurance is not impaired and
thereby extends system lifetime compared to other IMC solutions.

Keywords: memory wall, energy wall, von Neumann bottleneck, in-memory comput-
ing, non volatile memories, system architecture, storage class memory

ii

Remerciements

Censored for review

iii

Contents

Résumé i

Abstract ii

Remerciements iii

Contents iv

List of Figures vii

List of Tables x

List of acronyms xi

Glossary xv

1 Introduction & Contextualisation 2
1.1 The end of technology advancement . 3

1.1.1 Physical limits . 3
1.1.2 Architecture improvements . 5
1.1.3 Socioeconomic impacts . 8

1.2 Memory technologies . 8
1.2.1 Main memory technologies . 9
1.2.2 Emerging non volatile memories 14

1.3 A new computing paradigm . 22
1.3.1 Big Data . 22
1.3.2 Proposed solution : memory computing 23

1.4 Conclusion . 26

2 State-of-the-Art 28
2.1 Classification of different topologies/Nomenclature/Taxonomy 29
2.2 Memory computing . 30

2.2.1 SRAM . 30
2.2.2 DRAM . 33
2.2.3 NVM and SCM . 34
2.2.4 Other works . 39

2.3 Conclusion . 40

3 CSRAM Design 44

iv

3.1 Motivations for a digital wrapper using standard design flow 45
3.2 General design . 48

3.2.1 Specification . 48
3.2.2 ALU design . 51
3.2.3 Pipeline design . 52

3.3 Obtained results . 54
3.3.1 Workflow . 54
3.3.2 Simulation Results . 55

4 Simulation platform & Tools 60
4.1 Used benchmarks . 61

4.1.1 Linear benchmarks . 61
4.1.2 Quadratic benchmarks . 62
4.1.3 Cubic benchmarks and real application 63

4.2 Existing platforms . 64
4.2.1 Analytic model . 65
4.2.2 Hardware counters . 66
4.2.3 Simulation platforms . 67

4.3 Hardware model tools . 70
4.3.1 NVSim . 70
4.3.2 DRAM . 72
4.3.3 C-SRAM . 74

4.4 Platform . 76
4.4.1 Software interface for benchmarks 77
4.4.2 First version with hard coherency 78
4.4.3 Improved version with soft coherency and real disk accesses . . 80
4.4.4 Caches and DRAM validation . 82

5 IMC/NMC Computing Architecture 87
5.1 Reference SIMD 512-bit architecture . 89
5.2 Computing at the top level in the memory hierarchy 89

5.2.1 Scenario NVM 1 : Independent C-SRAM between DRAM and NVM 90
5.2.2 Scenario NVM 2 . 98
5.2.3 Scenario NVM 1 with page transfer 100
5.2.4 Impact of the reduction loop . 100

5.3 Computing near DRAM . 102
5.3.1 Scenario DRAM 1 : Independent C-SRAM between DRAM and L3

cache . 102
5.3.2 Scenario DRAM 2: DRAM row buffer 105

5.4 Conclusion . 108

Conclusion 111
Perspectives and future works . 117

Bibliography 118

v

Appendices 138

vi

List of Figures

1.1 ITRS roadmap as of 2020 . 3
1.2 Transistor leakage and gate length evolution 4
1.3 Predicted scaling cost in 2010 for 2018 . 4
1.4 Evolution of CPU frequency . 5
1.5 Power density evolution . 5
1.6 Frequency scaling of Intel Xeon core . 6
1.7 CPU and memory performance trends 6
1.8 Instruction energy breakthrough . 8
1.9 Cost of chips and investment needed . 9
1.10 SRAM bitcell circuit diagram . 10
1.11 DRAM bitcell circuit diagram . 11
1.12 Example of a DRAM addressing scheme 12
1.13 Memory hierarchy . 13
1.14 Die photographs . 15
1.15 Different RRAM resistance probability distribution 16
1.16 Circuit diagrams of 3 different bitcell types 17
1.17 Different types of RRAM bitcell . 18
1.18 Different types of PCM bitcell . 19
1.19 Different types of MRAM bitcell . 20
1.20 Quantity of data creater per year . 23
1.21 Internal versus external memory bandwidth 24
1.22 Memory computing research interest in Google Scholar (from [55]).

Search term are not precise enough as they include some result from
neurology (background noise). 25

2.1 Taxonomy . 29
2.2 Non standard SRAM bitcells used to implement IMC 31
2.3 NVM lifetime for different endurances 42

3.1 Proposed design methodology . 46
3.2 Different way of layouting the memories in the C-SRAM 47
3.3 Potential of the double-pump technique combined with our digital

wrapper for better pipeline efficiency . 48
3.4 Scalar, vector and scalar/vector computing architectures 49
3.5 Defined ISA for 32-bit system . 51
3.6 Base implementation of our digital wrapper 52
3.7 C-SRAM module hierarchy for 1RW memory 54

vii

3.8 Design workflow used for C-SRAM digital wrapper 55
3.9 Area and power ratio for different kind of memories (lower is better) . . 56
3.10 Energy vs delay for the MAC instruction 57
3.11 Throughput of different SRAM memories using double-pump technique 57
3.12 Efficiency vs throughput of our solution and state-of-the-art works . . 58
3.13 Different place and routed floorplans . 59

4.1 Neural network core functions distribution 62
4.2 Darknet callgraph for image classification 64
4.3 Simplified view of an Intel Skylake core memory system 65
4.4 Cache access either sequential or parallel 71
4.5 C-SRAM tiling energy vs timing access 75
4.6 Extended ISA for 64-bit system. Upper 64 bits are address bits and lower

64 are data bits. 77
4.7 Our work normalized against hardware counters for cache events . . . 84
4.8 DRAM tools timing (left y-axis) and energy (right y-axis) es-

timation (geometric mean of all benchmarks). Timing is normalized
against benchmark execution time and energy is normalized against
VAMPIRE. 85

4.9 Computed power reported by different tools using our benchmark suite 85
4.10 Simulation methodology: main steps . 86

5.1 Different integration possibility of the C-SRAM within the memory hier-
archy . 88

5.2 Reference architecture and memories parameters 89
5.3 Energy reduction and speedup for linear benchmarks normalized against

SIMD 512-bit reference (higher is better) 90
5.4 Energy reduction and speedup for linear benchmark with high SCM

access rate normalized against SIMD 512-bit reference (higher is better) 91
5.5 Energy reduction and speedup for quadratic benchmarks normalized

against SIMD 512-bit reference (higher is better) 92
5.6 Relative atax (to SIMD Reference) Energy and Timing distribution for

different size and a vector width of 128 bytes (lower is better) 93
5.7 Energy reduction and speedup for cubic benchmarks normalized against

SIMD 512-bit reference (higher is better) 94
5.8 Relative gemm (to SIMD Reference) Energy and Timing distribution for

different total C-SRAM size and a vector width of 4 kB (lower is better) . 95
5.9 Energy and timing distribution for a C-SRAM of 512 kB and vector size of

512 B normalized to SIMD 512-bit reference architecture (lower is better) 96
5.10 Caches energy and timing distribution for a C-SRAM of 512 kB and vector

size of 512 B normalized to SIMD 512-bit reference architecture (lower
is better) . 97

5.11 NVM memory access for a C-SRAM of 512 kB and vector size of 512 B
normalized to SIMD 512-bit reference architecture (lower is better) . . 98

viii

5.12 Best, worst and average () of all cases for both energy reduction ()
and speedup () normalized against SIMD reference 98

5.13 Detailed memory hierarchy for NVM row buffer 99
5.14 Energy reduction and speedup of NVM row buffer scenario normalized

against SIMD reference (top row), against independent C-SRAM (bottom
row) and averaged for one vector size through all total sizes (higher is
better) . 100

5.15 Energy reduction and speedup of page transfer scenario normalized
against SIMD reference (top row), against independent C-SRAM (bottom
row) and averaged for one total size through all vector sizes (higher is
better) . 101

5.16 Energy reduction and speedup when performing reduction loop inside
C-SRAM compared to the independent C-SRAM scenario and averaged
for one vector size through all total sizes (higher is better) 102

5.17 Energy reduction and speedup for linear benchmarks normalized against
SIMD 512-bit reference (higher is better) 103

5.18 Energy reduction and speedup for quadratic benchmarks normalized
against SIMD 512-bit reference (higher is better) 104

5.19 Energy reduction and speedup for cubic benchmarks normalized against
SIMD 512-bit reference (higher is better) 104

5.22 Best, worst and average () of all cases for both energy reduction ()
and speedup () normalized against SIMD reference 106

5.20 Energy and timing distribution for a C-SRAM of 512 kB and vector size of
512 B normalized to SIMD 512-bit reference architecture (lower is better)107

5.21 Energy reduction and speedup when performing reduction loop inside
C-SRAM normalized against independent C-SRAM at DRAM level and
averaged for one total size through all vector sizes (higher is better) . . 107

5.23 Minimum, maximum and average for each benchmark and tested scenario110

ix

List of Tables

1.1 Main memories key parameters. Data is from [22, 23]. 14
1.2 Non volatile memories parameters . 21

3.1 Versions used for design workflow . 55

4.1 Benchmarks parameters . 63
4.2 Simulation vs Instrumentation . 68
4.3 Platforms overview . 69
4.4 NVSim’s parameter used to design caches 71
4.5 Energy and latency of the selected PCRAM 72
4.6 Comparison of different DRAM simulation tools 74
4.7 Tiling timing and energy factor . 75

5.1 Reference architecture memories parameters 89
5.2 Best parameters for energy reduction, speedup and energy-delay product109

x

List of acronyms

ADC Analog Digital Converter. x, 31, 35, 38, 41, 43, 45

AI Artificial Intelligence. x, 7, 22, 27, 32–34, 61, 112

ALU Arithmetic & Logical Unit. x, 25, 46, 49, 51, 53, 54, 59, 113

API Application Programming Interface. x, 26, 94, Glossary: API

ASIC Application Specific Integrated Circuit. x, 7

BCAM Binary Content Addressable Memory. x

BEOL Back-End Of Line. x

BLAS Basic Linear Algebra Subprograms. x, 62, 63, 94, 114

BRAM Block Random Access Memory. x, 7

CAM Content Addressable Memory. x, 10, 32

CBRAM Conductive Bridge Random Access Memory. x, 18

CF Conductive Filament. x, 18

CIM Computing In-Memory. x, 29, 33, 37

CMOS Complementary Metal Oxide Semiconductor. x

CNN Convolutional Neural Network. x, 61, 63

CPI Cycles Per Instruction. x

CPU Central Processing Unit. x, 3, 5–11, 13, 17, 22, 24, 26, 30–34, 37, 39, 40, 42,
50–52, 61, 66–69, 73, 76, 79, 81, 89, 93–96, 100–102, 105, 111–117

CSRAM Computational Static Random Access Memory. x, 88

DBT Dynamic Binary Translation. x, 68, 69

DLP Data Level Parallelism. x, 5, 6

DRAM Dynamic Random Access Memory. x, 6, 7, 9–18, 20, 22, 24, 25, 27, 28, 32–
35, 37, 40, 51, 64, 66, 67, 70, 71, 73–75, 79, 81–86, 88–90, 92–100, 102–106,
108, 111, 112, 114–117

DSP Digital Signal Processor. x, 7

DVFS Dynamic Voltage and Frequency Scaling. x, 5

xi

EDA Electronic Design Automation. x, 45, 47

FPGA Field Programmable Gate Array. x, 7, 25, 27, 40, 41

FS Full System. x, 68

FSM Finite State Machine. x, 46, 52, 53

GPU Graphic Processing Unit. x, 6, 7, 24, 26, 27, 33, 34, 67, 80

HBM High Bandwidth Memory. x, 7, 11, 27, 33, 111

HDD Hard Disk Drive. x, 6, 10, 12, 13, 15, 17, 22, 112

HMC Hybrid Memory Cube. x, 33, 111

HP High Performance. x, 71

HPC High Performance Computing. x, 8, 10, 41, 42, 86, 89, 116

HRS High Resistive State. x, 16, 18–20

IMC In-Memory Computing. x, 1, 17, 22, 25, 26, 28–30, 32–36, 38–45, 47, 49, 56,
61, 69, 112, 113, 117

IoT Internet of Things. x, 2, 23, 37, 42, 49

IP Intellectual Property. x

IPC Instructions Per Cycle. x, 7

IR Intermediate Representation. x, 69

ISA Instruction Set Architecture. x, 26, 30, 39, 40, 42, 50, 51, 53, 54, 77, 113,
115, 117

LFB Line Fill Buffer. x, 66

LIM Logic In Memory. x, 29, 37

LLC Last Level Cache. x, 66

LOP Low Operating Power. x, 72

LRS Low Resistive State. x, 16, 18–20

LRU Least Recently Used. x, 79

LSQ Load Store Queue. x, 66

LSTP Low STandby Power. x, 71

MLC Multi Level Cell. x, 73

xii

MMU Memory Management Unit. x, 76

MRAM Magnetic Random Access Memory. x, 18, 20, 21, 38, 70, 112

MTJ Magnetic Tunnel Junction. x, 20

MVM Matrix Vector Multiplication. x, 41, 61, 62, 112, 114

NMC Near-Memory Computing. x, 26, 29, 30, 32, 35, 39, 40, 47, 69, 112

NMP Near-Memory Processing. x, 29, 39, 40

NVM Non Volatile Memory. x, 1, 14, 15, 20, 21, 27, 39–43, 47, 48, 59, 68, 70, 71,
73, 75, 87–91, 95–100, 105, 106, 108, 111–114, 116

OoO Out of Order. x, 5, 69

OS Operating System. x, 17, 67–69, 77

OTS Ovonic Threshold Switch. x, 18

OxRAM Oxide Random Access Memory. x, 18

PCM Phase Change Memory. x, 9, 18–21, 38, 47, 70–72, 112, 114, 116

PCRAM Phase Change Random Access Memory. x, 72

PIM Processing In Memory. x, 29, 33, 34, 36, 39, 40, 112

PMU Performance Monitoring Unit. x, 65, 66

RAPL Running Average Power Limit. x, 67

RRAM Resistive Random Access Memory. x, 9, 17–21, 36–38, 40, 44, 47, 70, 112

RTL Register Transfer Level. x

SA Sense Amplifier. x, 9, 11, 16, 25, 31, 35, 37, 41, 112

SCM Storage Class Memory. x, 1, 15, 20, 22, 28, 39, 62, 64, 79–82, 88–90, 98, 100,
108, 114–117

SE System Emulation. x, 68

SIMD Single Instruction Multiple Data. x, 3, 5, 6, 26, 27, 34, 69, 77, 88, 92, 106,
111, 116

SIMT Single Instruction Multiple Threads. x, 6

SLC Single Level Cell. x, 35

SRAM Static Random Access Memory. x, 1, 9–16, 18, 20–22, 25, 28, 30, 32–34, 37,
38, 40–48, 52, 53, 56, 59, 71, 72, 112, 113

SSD Solid State Drive. x, 12, 13, 15, 17, 20, 35, 39

STT-MRAM Spin Transfer Torque MRAM. x, 20, 38, 39

xiii

TCAM Ternary Content Addressable Memory. x, 31, 38

TLP Thread Level Parallelism. x

TTM Time To Market. x, 45, 47

xiv

Glossary

API An Application Programming Interface (API) is a particular set of rules and
specifications that a software program can follow to access and make use of
the services and resources provided by another particular software program
that implements that API. x, 26

NVM A Non Volatile Memory is a memory. x

Thrashing Thrashing is a phenomenon where pages are constantly swapped from
dram to disk such that the operating system becomes unresponsive. In this
thesis, thrashing can also denote the same effect but between Dynamic
Random Access Memory (DRAM) and csram.. x, 94, 104, 105

VCD Value Change Display. A file that contains all the value changes of all the
wires in a circuit.. x, 55

xv

Preamble

This thesis is divided in five chapters that will introduce you to the why am i doing this
thesis: the global context raises issues about computing performances and efficiency
that requires an innovating solution (Chapter 1). In-Memory Computing (IMC) is a
promising solution compatible with new emerging Non Volatile Memories (NVMs)
that also brings new technological improvements in the computer world. We study
state-of-the-art in Chapter 2 and show how it misses two key points about NVMs
endurance and where to compute in the memory hierarchy. We propose our solution,
a digital wrapper around a Static Random Access Memory (SRAM) that we call C-SRAM
(Chapter 3). Our C-SRAM can then be tightly coupled to others NVMs or Storage Class
Memories (SCMs). To perform an architectural evaluation, we develop a simulation
platform fed with technological parameters from state-of-the-art and our own works
(Chapter 4). Putting it all together, we show that computing at the top of the memory
hierarchy, i.e. close to mass and permanent storage, yields the most gains for both
execution time and energy reduction (Chapter 5).

I hope you will enjoy reading this thesis as much as I enjoyed writing this final
sentence.

1

1 Introduction & Contextualisation

Hardware design comes to the end of its golden era where a simple wait of a few
months could yield huge improvements for both performance and energy consump-
tion. This was mainly driven by technology scaling and moving to smaller and more
advanced nodes. However, as industry reaches the smallest possible node (3 nm),
progress can no longer come from technology itself but must come from finer ar-
chitecture and software designs to better utilize hardware. Famous von Neumann
architecture where memories and computing are physically separate and logically
distinct units must evolve to face new computing requirements posed by recent rise
of big data applications and artificial intelligence. Internet of Things (IoT) devices are
also presenting a challenge for energy efficient designs in the wake of societal changes
in regard to global warming and energy sobriety.

Contents
1.1 The end of technology advancement . 3

1.1.1 Physical limits . 3
1.1.2 Architecture improvements . 5
1.1.3 Socioeconomic impacts . 8

1.2 Memory technologies . 8
1.2.1 Main memory technologies . 9

1.2.1.1 SRAM . 9
1.2.1.2 DRAM . 10
1.2.1.3 Hard disk and tapes . 12
1.2.1.4 NAND Flash . 12
1.2.1.5 Current memory hierarchy 13

1.2.2 Emerging non volatile memories 14
1.2.2.1 RRAM . 17
1.2.2.2 PCM . 19
1.2.2.3 MRAM . 20

1.3 A new computing paradigm . 22
1.3.1 Big Data . 22
1.3.2 Proposed solution : memory computing 23

1.4 Conclusion . 26

2

1 Introduction & Contextualisation – 1.1 The end of technology advancement

This first chapter will give the reader a very wide introduction and contextualisation
on semiconductor technology facing the end of a cycle with a halt to miniaturisation
and other well known obstacles to densification. The key to improve performance is to
add more transistors into circuits. However this is defined by physical limits that have
been or are being reached nowadays, including energy and memory wall problems
(section 1.1). New technologies that may resolve partially these problems are being
introduced, especially for emerging memories (section 1.2). These new memories en-
able a new computing paradigm to solve the admitted von Neumann bottleneck that is
exacerbated by big data applications and the rise of artificial intelligence (section 1.3).

1.1 The end of technology advancement

1.1.1 Physical limits
For years, what has driven the semiconductor industry progress is the technology
scaling, i.e. the miniaturisation of the transistor. Reducing the transistor, base unit
of all the digital world, by a factor of

p
2 leads to a doubling in the total number of

transistors in the same area. Gordon Moore predicted that this doubling would occur
every 24 months, later revised down to 18 months. This is known as the Moore’s
law [1] which held true for almost 50 years (Figure 1.1). More transistors equals more
functionalities or more complex ones; as such, we have seen parallel computing
emerged during the 2000s with Single Instruction Multiple Data (SIMD) and multicore
Central Processing Units (CPUs). However, miniaturisation has limits that cannot be
exceeded. It is physically impossible to make a transistor that is smaller than a few
atoms and we are already hitting this limit with 3 nm. This means that to answer the
growing need for more computing power, semiconductor industry will have to rely on
better architectural designs and smarter software models.

Moving forward to more advanced nodes has also some technical limits that can
be seen as side effects for laypeople readers. Smaller transistors are more leaky as
the space between different voltage domains is also reduced. On the other hand, it
allows to reduce voltage because the threshold voltage is lowered as well. All in one,

1970 1985 2000 2015 2030
1 nm

10 nm

100 nm

1 µm

10 µm

Year

Fe
at

ur
e

si
ze

Figure 1.1: ITRS roadmap as of 2020

3

1 Introduction & Contextualisation – 1.1 The end of technology advancement

100

1

0.0001

0.01

0.0000001
1990 2000 2015 2020

300

250

200

150

100

50

0
1995 2005 2010

No
rm

ali
ze

d
to

ta
l c

hi
p

po
we

r d
iss

ip
at

io
n

Ph
ys

ica
l g

at
e

len
gt

h
(n

m
)

Gate-oxide
leakage

Sub-
threshold
leakage

Gate length

Dynamic
power

Possible trajectory
if high-kdielectrics
reach mainstream
production

Figure 1.2: Transistor leakage and gate length
function of year. From [3]

Table 1. Technology and circuit projections for processor chip components.

2010 2017

Process technology 40 nm

10 nm, high

frequency

10 nm,

low voltage

VDD (nominal) 0.9 V 0.75 V 0.65 V

Frequency target 1.6 GHz 2.5 GHz 2 GHz

Double-precision fused-multiply

add (DFMA) energy

50 picojoules (pJ) 8.7 pJ 6.5 pJ

64-bit read froman 8-Kbyte

static RAM (SRAM)

14 pJ 2.4 pJ 1.8 pJ

Wire energy (per transition) 240 femtojoules (fJ)

per bit per mm

150 fJ /bit/mm 115 fJ /bit/mm

Wire energy (256 bits, 10 mm) 310 pJ 200 pJ 150 pJ

Figure 1.3: Predicted scaling cost in 2010 (45 nm)
for 2018 (10 nm). From [4]

this leads static power to be dominant in nodes smaller than 90 nm [2] and to increase
for each smaller node (Figure 1.2). Moreover, although reducing transistor leads to
gain in dynamic power, wire cost is not scaling down with the same tendency. Copper
resistivity remains constant and data transit over long wires still stands as the main
power sink in every design, especially when memory is on a chip of its own. This is
shown in Figure 1.3 dating from 2011 that forecast this difference in power reduction
from computing complex operations compared to transmitting that will expand four
times between 2010 and 2017.

Another problem linked to miniaturisation is Dennard’s scaling [5]. It states that
as transistors shrink, their power density remains constant. This was true from 1974
to approximately 2006. At that point, power density started to increase and it ulti-
mately limited frequency increase. Indeed dynamic power is determined by two main
factors which are the voltage and the frequency (Equation 1.1). Voltage is fixed by
the technology and cannot go below the threshold voltage plus the line loss. C is
the parasitic wire capacity swung at every clock cycle and is also a fixed parameter
of the technology. So we can only play on the frequency but as we want the most
performance, we tend to push it to the maximum acceptable limits by the design, i.e.
the maximum power we can either deliver or dissipate. As power density increased, it
soon started to be impossible to rise frequency without damaging the circuit hence a
frequency saturation from 2005 as shown in Figure 1.4. These technology problems
are physical limits that cannot be broken without a new disrupting technology such as
optronic or spintronic that could leverage them. It also led to the famous expression
by Herb Sutter: “The free lunch is over” [6].

Pdyn =CV 2 f (1.1)

4

1 Introduction & Contextualisation – 1.1 The end of technology advancement

1985 1990 1995 2000 2005 2010

10

32

100

316

1000

3162

10000
Clock Frequency vs. Time

M
H

z

I ntel
AMD

I BM
DEC

Sun
Other

Figure 1.4: Evolution of CPU frequency over years.
From [7]

Figure 1.5: Power density evolution.
From [2]

1.1.2 Architecture improvements
Industry now faces a double challenge, the impossibility to increase working fre-
quency and the increase in leakage current when moving on to more advanced nodes.
To keep performance development in their chips, industries introduced multiple
workarounds: Single Instruction Multiple Data (SIMD), multicore and Out of Order
(OoO). First, SIMD CPUs were developed to treat multiple data in a single instruction
using vector larger (128 bits or more) than the base register (32 or 64 bits at that time).
SIMD exploits intrinsic Data Level Parallelism (DLP) in applications. The widest SIMD
processor supports up to 512 bits vectors. Secondly, multicore designs permit two
independent instruction flows to execute concurrently although they share some
hardware, especially memories above L2 or L3 and buses. In some recent commer-
cial chips, up to 64 cores can be used in parallel [8]. Third, OoO CPUs introduction
improved compute unit use and reordering of instructions allowed CPUs to mitigate
memory timings on independent data paths. With multiple compute units available,
processors are said to be superscalar, i.e. capable of executing multiple instructions
simultaneously. These three improvements however reached the limit to their com-
puting performances due to power constraint, and insidiously led to the apparition
of dark silicon [9]. This happens when complex circuits cannot be fully powered
permanently or simply overheat and need to dynamically choose which part to power
or to adjust either voltage or frequency using Dynamic Voltage and Frequency Scaling.
The latter was adopted by the industry because it allowed more flexibility and less
stuttering in data streams. An example is given for Intel multicore chips and the use of
SIMD extensions in Figure 1.6. Dark silicon reveals the low energy efficiency of these
designs.

Not only those improvements are not sustainable in the long term, they also put
pressure on other system components, typically on the memory system (Figure 1.13).
For SIMD, memory now has to serve request up to 512 bits instead of scalar data of
32 or 64 bits. Caches are designed to respond swiftly to these requests but when they

5

1 Introduction & Contextualisation – 1.1 The end of technology advancement

Figure 1.6: Frequency scaling of an Intel Xeon Silver 4116, a 12 cores chip, function
of active cores and active SIMD extension. From [10]

1

100

10

1000

Pe
rfo

rm
an

ce

10,000

100,000

201020051980 20001995
Year

Processor

Memory

19901985 2015

Figure 1.7: CPU and memory performance trends (from [11])

would have to serve only a single data, they now have to load large batch of data which
increases their power consumption. As vector CPUs treat batch of data, which is now
the size of a cache line, caches experience a high miss rate putting more pressure on
the slower DRAM which becomes the von Neumann bottleneck. This is worsened by
multicores because each core will request data to DRAM that the L3 cache cannot
store due to its limited capacity. So now, DRAM has to deliver data to several cores
simultaneously instead of just one. Each core having its own data set, data locality
is reduced which also impacts caches and DRAM performance. This is illustrated in
Figure 1.7 where performance of CPUs increase faster than which of memories leading
to a performance gap between the computing and the memory systems. This is what
is called the memory wall, because the memory cannot deliver data fast enough and
the CPU just waits doing nothing. Note that above DRAM, Hard Disk Drive (HDD)
and Flash disks have long been surpassed and cannot compete in terms of bandwidth
with the need of modern CPUs nor of DRAMs.

To keep increasing throughput and energy efficiency, Graphic Processing Units
(GPUs) were pushed in. They use Single Instruction Multiple Threads approach, i.e.
different threads all executing same instruction on different data with predicates to
allow branches and conditional execution to occur. It heavily simplifies the internal
design of the processing elements making them more compact so that thousands can
be put on a single chip. This benefits to application with heavy DLP such as filtering
an image where the same operation is carried on all pixels with conditional code to
handle edge cases. GPUs come with their own main memory, nowadays of type High
Bandwidth Memory (HBM) with 256 bits IO and high bandwidth. They also have

6

1 Introduction & Contextualisation – 1.1 The end of technology advancement

their own internal caches with 2 levels of cache. Nonetheless, initial data transfer
from system main DRAM memory to GPU’s memory must still take place before the
algorithm runs and data must be sent back once it is done. This back and forth can
end up representing more than 90 % of the total execution time depending mainly on
the algorithm complexness and the data set size [12]. Overall, GPUs work pretty well
on the same regular access patterns as CPUs. They also provide similar program flow
with a wide range of complex instructions. Their massive parallelism is used to build
some of the Top500 supercomputers [13, 14].

However, both CPUs and GPUs are very generic and can be considered as swiss
knives of computing. They do the job but not in a very efficient way except for regular
linear access patterns. To improve energy efficiency and throughput, co-processors
dedicated to specific tasks were designed, most common one being the Digital Sig-
nal Processor for embedded systems with real time constraints. Unfortunately, the
need for more, better and greener computing requires flexibility that these extra co-
processors do not offer. Field Programmable Gate Arrays (FPGAs) are yet another
possible mean to gain extra performance by allowing CPU to turn part of itself into a
highly energy efficient application specific accelerator and bridge the gap between
flexibility of use and efficient designs. Their programmability combined with their
natural energy efficiency makes them suitable candidates for use as co-processors.
They come with their own memory in the form of Block Random Access Memory
(BRAM) with wide IO to feed their natural data level parallelism. Unfortunately, these
BRAMs still need to be filled from another external memory which is often DRAM,
but FPGAs do improve energy efficiency. So the main problem of memory wall is
still there for initial and final data transfer, just like for GPUs. Another step further is
using Application Specific Integrated Circuit, which are fixed designs but with even
better energy efficiency and throughput than FPGAs, but once again, the memory wall
remains.

All these hardware solutions are to boost classic algorithms performance but there
was also the breakthrough of new algorithms in the last decade, mainly Artificial
Intelligence (AI) with neural networks. AI is a solution to treat massive amount of data
and extract meaningful tendencies but it comes with its own data that are the neurons
parameters which can also be counted in billions for some networks. Aforementioned
hardware solutions can all improve neural networks performances but all end up
hitting the memory wall.

The race for best performances, although a great source of hardware improvements
such as branch predictors, prefetchers and so on, induced a rising complexity of
CPUs that led to some security flaws [15]. But it also drives for more power and
ironically reduces energy efficiency [16]. The industry focused on instruction cen-
tric paradigm where everything was done to increase throughput of instructions,
measured in Instructions Per Cycle. But when looking at the energy bill of simple
instructions (Figure 1.8), we see that this is not very efficient as most of the energy
comes from moving the data around. With the introduction of big data and artifi-
cial intelligence applications that uses huge batches of data, this calls for a shift to
data centric architectures to solve all the two major challenges : the von Neumann

7

1 Introduction & Contextualisation – 1.2 Memory technologies

Figure 1.8: Instruction energy breakthrough along with some energy consumption
of common instructions and memory accesses. From [17]

bottleneck aka memory wall and the energy wall or dark silicon.

1.1.3 Socioeconomic impacts
This changing paradigm is in accordance with the evergrowing need for greener
computing and better energy efficiency in data centres. High Performance Computing
(HPC) centres are reaching tens of megawatt of power consumption which is the
equivalent of a 20000 inhabitants city [13]. Another important point is the economic
cost of moving to more advanced nodes which grants no more benefits due to the rising
cost of state-of-the-art technologies presented in Figure 1.9. As shown in Figure 1.8,
the best way to reduce energy consumption is to minimize data movement. This can
yield performance improvement per the vector nature of memory computing and by
the suppression of costly back and forths data movements. Moreover, it can alleviate
the energy wall problem by reducing the performance and energy constraints put on
the CPU.

Up to this point, we have presented the global context and the challenges facing the
semiconductor industry for the following years: no more possible scaling, no more
power and a growing need for more energy efficient computing. These challenges
call for either a shift to different technology or to rethink the architecture of systems
to better use them. In the following section, we present the standard memory
technologies and the emerging memories that appeared in the last decade.

1.2 Memory technologies
Previous section dealt mainly with CPUs which is the core of computing systems. We
have shown that instruction centric architectures faced a soon to come dead end due

8

1 Introduction & Contextualisation – 1.2 Memory technologies

(a) Chip cost per million gates (in $)

The fab: startup-costs of scaling

‘18-’20
(7nm)

$12B
1

TSMC

‘12-’14
(22/20nm)

5
$6.7B

TSMC
Intel

Samsung
GF
IBM

‘10-’12
(32/28nm)

8
$4.9B

TSMC
Intel

Samsung
GF
IBM
ST-M
UMC

Panasonic

‘14-’15
(16/14nm)

4

TSMC
Intel

Samsung
GF

$9.2B

‘20-’23
(5nm)

$17B
1?

TSMC?

‘17-’19
(10nm)

$10.5B
1-3

TSMC
Samsung
Intel?

‘08-’12
(45/40nm)

13

TSMC
Intel

Samsung
GF
IBM
ST-M
UMC

Panasonic
Fujitsu
Renesas
SMIC
Toshiba
TI

$4.0B

‘06-’08
(65nm)

13

TSMC
Intel

Samsung
GF
IBM
ST-M

Panasonic
UMC

Fujitsu
Renesas
SMIC
Toshiba
TI

$2.5B

‘04-’06
(90nm)

18

TSMC
Intel

Samsung
AMD
IBM
ST-M

Panasonic
UMC

Fujitsu
Renesas
SMIC

Toshiba
Freescale

TI
Infineon
Sony
Cypress
Sharp

$1.8B

‘02-’03
(130nm)

25

TSMC

Mitsubishi

Intel
Samsung
AMD
IBM
ST-M
UMC

Panasonic
Fujitsu
Renesas
SMIC

Freescale
Toshiba
TI

Infineon
Sony
Cypress
Sharp
ADI
Atmel
Hitachi
ON
Rohm
Sanyo

$1.45B

TSMC

year
(node)

(b) Founders per node and the associated investment cost

Figure 1.9: Cost of chips and investment needed for the founder. From [18]

to energy and memory walls. This section introduces main memory technologies
such as Static Random Access Memory (SRAM) and Dynamic Random Access Memory
(DRAM) but also persistent storage to give the reader a broad range of possibilities and
perspectives with their associated limitations which represent a major challenge in
the data movement cost. Emerging memory technologies including Resistive Random
Access Memory (RRAM) or Phase Change Memory (PCM) are presented along with
their remaining challenges to make them viable economically and offer substantial
benefits for system architects over conventional memories.

1.2.1 Main memory technologies
The main memory technologies are the most common ones that can be found in
any consumer device. They are the most mature ones and present in the market for
decades. However they have some intrinsic design flaws such as high leakage (whether
dynamic or static power) or very high latency for non volatiles ones.

1.2.1.1 SRAM

Static Random Access Memory (SRAM) is a fast memory used in almost all existing
CPUs dating back to 1964. It provides an extremely fast memory whose working clock
frequency is above 1 GHz with virtually infinite endurance. The circuit diagram of a
six transistors SRAM bitcell is shown in Figure 1.10. It is made up of two head to toe
inverters and two access transistors. Read operation is performed by first precharging
the bitlines to Vdd

2 , then by activating the two access transistors and using a Sense
Amplifier (SA) at the bottom of the bitlines to minimize the error margin. Write
operation is done similarly by forcing the data on both bitlines which will switch the
state of both inverters. However, the inverters are not perfect and leak, so the SRAM
bitcell presents a high static power consumption. It is often arranged in large array, up
to 8192 wordlines or bitlines which increases the dynamic consumption due to the

9

1 Introduction & Contextualisation – 1.2 Memory technologies

WL WL

BL BL

Figure 1.10: SRAM bitcell circuit diagram

large capacitance of the lines. To reduce dynamic switching power, bitlines are often
split in local groups with access transistors to commute global bitlines.

Per se, the 6T bitcell is a 1 read-write (1RW) bitcell, which means that it can either be
read or written once per cycle. SRAM bitcell have a large diversity as it also exists in 8T
up to 16T. These extra transistors allow to add isolation between the bitcell and the bit-
lines so that read or write to several bitcells on the same bitline can occur concurrently.
This is used to add more access port to the memory to make 1R1W, 1R1RW and even
2RW bitcells. Literature also shows that 6R6W bitcell is possible [19]. SRAM bitcell
can also be used as Content Addressable Memory memory that is commonly used in
routers. Finally, as it is made up of six transistors, it has a very low density that does not
allow to have large SRAM memory bigger than a few megabytes. What makes SRAM so
interesting is that it is a CMOS circuit that can be incorporated directly in chips design
and scales down along with the technology. It is used as cache or scratchpad memory
and is often tightly coupled to CPUs as it is the only memory to keep up the pace
with high frequency. Other uses include small buffer memory in devices like HDD,
Flash drives or anything that needs few amount of memory before transmitting over
serial bus or medium that requires serialisation, e.g. radio transmission. Its flexibility
allow designers to easily use custom SRAMs with wide IO or even asymmetrical IO
(for serialisation for instance) as well as odd row number.

1.2.1.2 DRAM

Dynamic Random Access Memory (DRAM) is the main memory in non embedded
systems such as desktops, servers, HPC and even in some embedded systems like
autonomous cars. It features an infinite endurance with medium speed (relative to
SRAM) while having a very high density. Figure 1.11 shows the circuit diagram of a
DRAM bitcell. It is composed of an access transistor and a capacitor to store the data.
This capacitor is leaking so it needs to be refreshed periodically, hence the dynamic in
the name. This leaking along with the refresh operation cause this memory to have a
high dynamic power consumption even when the memory is idle. Read is performed
by precharging the bitline to Vdd

2 and then by activating the access transistor. The

10

1 Introduction & Contextualisation – 1.2 Memory technologies

BL

WL WL

Figure 1.11: DRAM bitcell circuit diagram

capacitor then discharges or charges the bitline and a SA catches the difference. Read
is thus destructive as the capacitor shares its charge with the bitline and the original
data needs to be restored. Write is simply done by activating the access transistor and
pulling the capacitor to the desired voltage (high for 1, low for 0).

To prevent the whole memory from being inaccessible during a refresh, DRAM is
organized in ranks subdivided in chips and in banks. Banks are split across several
chips for parallelism reason. Each bank is itself partitioned in subarrays which contain
the wordlines and bitlines. Wordlines are referred to as logical rows that spans several
chips while bitlines are logical columns. Columns are muxed in a similar fashion to
SRAM. To read or write, a DRAM row must first be activated, i.e. selected, it is then
loaded in the row buffer where read and write take place for faster operation. In
particular, burst mode allow several operation to contiguous addresses to happen
with a single command and fully benefit from the row buffer. When all operations
on the current row are done, either a different row within the same bank can be
activated or a row in a different bank is selected. The former bank must first receive
a precharge command to reset bitlines to Vdd

2 to minimize leakage before activating
a row in another bank. When a row is closed, the row buffer is written back in place
to restore data. Refresh affects a whole bank at a time and makes it unavailable until
it is finished. The addressing scheme vary from chip to chip but it is mainly column
first then bank then row as shown in Figure 1.12. Above ranks are channels which are
physical buses and may be shared by several DRAM devices. Addressing schemes can
also be interleaved or with some XOR between some bits to increase row-hit rate.

Banks are the physical output and have 8 bits IO. To have a 64 bits IO, 8 banks are
disposed in parallel. The complicated rules and state machine to handle DRAM com-
mands and its dynamic nature requires complex designs to ensure correctness. That is
why CPUs have a portion of their area reserved for DRAM scheduling (see Figure 1.14b).
However, DRAM’s high density with its intermediate speed and high bandwidth makes
it a suitable choice to fit between long term but slow storage and SRAM’s high speed
but low capacity. To answer the growing need for bandwidth, manufacturers have
developed HBM that uses 3D stacking and have very wide IO (256 bits) compared
to DRAM standards. Both are standardised by the JEDEC committee which makes
DRAM a somewhat rigid memory format. Due to the complex state machine needed
to respect timings and transitions, DRAM has a latency that can greatly vary between
20 ns to more than 400 ns. Finally, DRAM suffer from write disturb. Continuous write
to the same row and bitcells by alternating activation, write and precharge leads neigh-

11

1 Introduction & Contextualisation – 1.2 Memory technologies

Bit 31 30 29 27 26 13 12 10 9 0

Channel Rank Row Bank Column

Figure 1.12: Example of a DRAM addressing scheme

bouring cells to be affected and even flipped due to parasitic capacitance between
lines. The row hammer attack exploits this vulnerability [20]. Smaller nodes have
more parasitic capacitance which augments this risks but also increases the leakage
and reduces the stored charge which induces more refresh and more unavailability.
As such, DRAM is limited in scaling and faces its own technological challenges.

1.2.1.3 Hard disk and tapes

HDDs and tapes are the most ancient forms of digital storages that are still in use today.
They are also the only form of modern storage to use mechanical parts, i.e. an engine,
incorporated for HDDs and external for tapes, to spin the disks or roll up and unroll
the tape. As such, they require a vibration free environment to be used safely. Shocks
may damage data permanently, especially for HDDs and make the device completely
unusable. Both HDD and tape have a high data density, not necessarily in surface
but more in volume as disks can be easily stacked and tape film is really thin, around
10µm. Largest commercial HDD is around 15 TB while tape goes up to almost 500 TB.
The main cons of these technologies is obviously their very high latency around 10 ms
for HDD while tape can go anywhere between one second to more than a minute
depending on how far on the tape the data is. Main use of tape includes long term
storage such as archiving or data back up for companies. One of unthought advantage
of tape is being offline storage which protects data from online attacks. Endurance of
both storages is not really a concern as mechanical parts wear out before it is reached.

1.2.1.4 NAND Flash

NAND Flash memory is the most common type of non volatile memory. It is more
recent than SRAM and DRAM but the absence of mechanical parts allowed it to be
used in numerous devices thanks to its non volatility. It is used in SD memory cards,
USB sticks, smartphones and Solid State Drives (SSDs) for the most common devices.
NAND Flash is made up of a single transistor with a floating gate which stores the
information by retaining the charge after power down. Read is simply done by sensing
the current flowing in the channel whereas write is more complex and requires several
steps. First, due to how NAND Flash is built to maximize density, it is organised in
blocks that cannot be written word per word but only as a whole. This means that
even for changing a single bit, a full block must be written. Moreover, write operation
requires the block to be erased before so data must first be read to keep non modified
data intact. A block is typically around 512–4 kB.

The advantages of NAND Flash are its non volatility with high shock resistance
thanks to no mechanical parts compared to HDDs or tapes. Besides, it has a very

12

1 Introduction & Contextualisation – 1.2 Memory technologies

CPUCPU

CachesCaches

System DRAMSystem DRAM

Mass StorageMass Storage

Latency & Size
Increase

Bandwidth
Increases

Figure 1.13: Memory hierarchy in a conventional system. In server or cluster, DRAM
and mass storage may be distributed or remote.

high density in comparison to SRAM and DRAM. NAND Flash indeed supports 3D
stacking and most recent chips have up to 176 bitcells stacked [21]. This allows to
have a virtual footprint of less than the theoretical minimum of 4 F2. Moreover, each
die is also vertically stacked with up to 16 other dies in a standard commercial SSD.
This sums up to density superior to 100 Gbit/cm2. On the other hand, NAND Flash
is quite slow in regard to previous volatile memories. Its read speed is around 1 GB/s
but its write speed is 5 times slower around 200 MB/s due to the erase operation. The
main disadvantage of NAND Flash is its latency around 10µs for reading which makes
it around 100 times slower than DRAM. For writing, latency around 100µs can be
expected. These high latencies are due to the high voltage required to operate on the
memory array, up to 15 V which takes some time to reach.

When people talk about memory, they often mention capacity, density and band-
width but they rarely talk about endurance and persistence. Writing in NAND Flash
requires high voltage which ends up damaging the cell after many programming cycles.
This means that a NAND Flash has its lifetime determined by the write bandwidth and
the capacity. To circumvent this problem, industrials added more memory to devices
to be used when a block is failing. Commercial devices may have up to 20 % of extra
memory. Another technique used is wear levelling. This allows to dynamically remap
some blocks onto others to even the number of writes across the device. It also pro-
tects against write attacks aiming to destroy data by wearing out SSD prematurely. To
manage wear levelling, NAND Flash devices embed a controller with their own SRAM
memory that also allows to perform some operations on data. Finally, to speedup
writes, SSDs may embed some DRAM to act as a write buffer but this is only effective if
the amount of data is lower than the buffer size. Scalability is also a concern for NAND
Flash as the high voltage needed to write the cell constrains the transistor size and
limits the downscaling.

1.2.1.5 Current memory hierarchy

On one hand, CPUs need a working memory to store their temporary data. This mem-
ory can be a SRAM for small microcontrollers or DRAM for larger processors. On the
other hand, a permanent storage is required to store programs and associated data. It
is often made with NAND Flash or HDD. As explained in Section 1.1.2, processors have
seen numerous architectural improvements to boost their performances. However,

13

1 Introduction & Contextualisation – 1.2 Memory technologies

Table 1.1: Main memories key parameters. Data is from [22, 23].

Price ($/GiB) Density Latency Bandwidth Persistence Largest size

SRAM 5000 120 F2 or 2 Gbit/cm2 1–5 ns 1 TiB/s 10µs (Power off) 10–100 MiB

DRAM 20 8 F2 or 25 Gbit/cm2 20–400 ns 10–100 GiB/s 64 ms 100–1000 GiB

Flash 4 <1 F2 or >100 Gbit/cm2 1–10µs 1 GiB/s 10–20 yr 10–100 TiB

HDD 0.1 100 Gbit/cm2 5–20 ms 100 MiB/s 10–100 yr 10–100 TiB

Tape 0.01 49 Gbit/cm2 1–100 s 300 MiB/s 100+ yr 100–1000 TiB

memories did not keep up the pace and, as a result, intermediate memories known as
caches were introduced to mitigate timings. If we take a desktop or server CPU, its
working frequency is around 3 GHz so it needs a memory to be the fastest possible
to not waste clock cycles waiting for data. This is the goal of the L1 cache made in
SRAM which is around 16–128 kB and usually have a latency of around 1–3 ns. To
be able to serve an instruction and a data at once, there are often two L1 cache, one
for instructions and one for data. To bridge the latency and capacity gap with the
main DRAM memory, a L2 and a L3 caches were introduced. L2 has a capacity of
128–1024 kB and a latency between 5–10 ns while L3 can be up to more than 50 MB but
with a higher latency around 20–50 ns. In rare cases, a L4 made from embedded DRAM
can be present. We now have the complete modern memory hierarchy as shown in
Figure 1.13. Three caches, one or more external DRAM chips and a, possibly remote,
permanent mass storage. All these memories end up eating most of the available area.
Figure 1.14a shows a 130 nm Intel Pentium M from 2005 where memory represents
more than 60 % of the chip area, so this tendency is already decades old. A more recent
processor (Figure 1.14b), a 2015 22 nm Intel Haswell shows a similar area distribution
including complex DRAM controller taking the same surface as 2 or 3 cores. That is
why new emerging non volatile memories with much better integration and higher
density can be of great help. A summary of main memories parameters is presented
in Table 1.1.

1.2.2 Emerging non volatile memories
Emerging NVMs are a group of recent (namely 2010 and later) memory technologies
that offer promising performances, density and scalability. From an electrical point
of view, they all share the same characteristics. In previous memories, such as SRAM,
DRAM or NAND Flash, the physical property used to store data is the charge of the
bitcell. These charges are maintained through power supply and are gone when the
power is shut down (except for NAND Flash). In the case of resistive memories, the
physical property used to retain data is the resistive state of the bitcell. This resistance
changes depending on the current that flows through the bitcell, but the underlying
phenomenon depends on the technology. These emerging NVMs provide a huge
benefit compared to SRAM and DRAM especially, because it eliminates the need to
have several of current levels of memory in the hierarchy. As such, it would make

14

1 Introduction & Contextualisation – 1.2 Memory technologies

2MB L2
Cache

32kB
L1I

32kB
L1D

(a) A 130 nm Intel Pentium M die

Queue, Uncore, IO

Shared
L3 Cache

20 MB

Core Core

Core

Core

Core

Core

Core

Core

Memory controller
DDR4

(b) A 22 nm Intel Haswell die. Each core has a 256 kB L2 cache
and 2×32 kB L1 caches

Figure 1.14: Die photographs

a big leap forward if it would allow to suppress the L3 cache, the DRAM and also
the main storage (either spinning HDD or SSD). The introduction of NVMs would
thus potentially replace 3 levels of the memory hierarchy into only one, leveraging
huge gains in power consumption, timing (latency and bandwidth), density and
silicon area. Another possible use is as Storage Class Memory (SCM), which is a
class of intermediate memory between DRAM and NAND Flash, in terms of latency,
bandwidth and energy.

The gains in power consumption must however be tempered. As of today, reading
these NVMs may be cheaper than reading DRAM, but the write operation can be
extremely costly depending on the considered technology. There is no static power
compared to SRAM nor dynamic idle power compared to DRAM which make these
memories more energy efficient. But if they are to replace SRAM, as of today, it would
increase power consumption for this specific use with high bandwidth requirement.
The gains in latency are also to be nuanced due to the write asymmetry where the write
operation can take up to 10 times longer than the read operation which is problematic
in a system point of view. To ensure system responsiveness and guarantee perfor-
mances in all use cases, write asymmetry still needs to find workarounds. However, as
these are non volatiles, it suppresses the refresh operation that can hinder the access

15

1 Introduction & Contextualisation – 1.2 Memory technologies

LRS HRS

(a) Low On/Off ratio, narrow
distribution

LRS HRS

(b) High On/Off ratio, wide distribution

LRS HRS

(c) Low On/Off ratio, wide dis-
tribution

00 01 10 11

(d) High On/Off ratio, narrow distribution and multilevel cell

Figure 1.15: Different RRAM resistance probability distribution. Orange hatched
() denotes state intersection and should be avoided at all cost.

timing on DRAM. Another issue is that timing operations are usually better than at
least DRAM, but not of SRAM.

As said earlier, the resistance is the physical property used to store data. We call Low
Resistive State (LRS) the logical 0 and High Resistive State (HRS) the logical 1. The ratio
between HRS and LRS is called the On/Off ratio and determines the precision of the
SA, the working frequency and if multilevel cells can be used. Unfortunately, contrary
to electrical charge, resistance cannot be controlled accurately and follows a normal
or log-normal distribution as shown in Figure 1.15. A narrow distribution with a high
On/Off ratio is the best case as both state can clearly and easily be distinguished and
may even allow multilevel cell (Figure 1.15d). The worst case is a low ratio with a wide
distribution where some LRS cells might have a higher resistance than some HRS cells
(Figure 1.15c). In this case, either error correcting code can be used but this requires
more space and may fail if the distributions are really bad, or write verify loop to make
sure the cells end up in a distinguishable state but this is non deterministic and write
may take a long time. Low ratio with narrow distribution (Figure 1.15a) and high ratio
with wide distribution (Figure 1.15b) are acceptable cases if the distributions do not
overlap.

In terms of density, these can reach the theoretical maximum of 4 F2, but it depends
on the array structure and the access device to the bitcell: none (crossbar structure),
transistor (1T1R bitcell) or back-end of line selector (1S1R) as shown in Figure 1.16. 3D
technologies can enable even higher density like Flash already offers. As technology

16

1 Introduction & Contextualisation – 1.2 Memory technologies

WL

WL

BL
(a) Standalone bitcell in a crossbar

structure

SL

WL

BL

(b) 1T1R

BL

WL

(c) 1S1R

Figure 1.16: Circuit diagrams of 3 different bitcell types

will mature, denser designs will ensue. For silicon area, as we can theoretically remove
the DRAM and the mass storage (whether HDD or SSD), this removes 2 external chips
from the system allowing more compact and efficient systems to be produced. With
the advance of IMC and 3D stacking, we can even dream of a all in one chip where
memory and CPU are tightly coupled [24].

There are still some work to be carried at hardware level including technology and
architecture, but on software side as well. New data structures can benefit from the
non volatility and Operating System (OS) needs to take it into account. Indeed, non
volatility ensures that data remains even after power off, nonetheless this also cause
some security threats as data will remain permanently which can include sensitive
data such as passwords. OS must take care of erasing data after deallocation which
was easier with DRAM. On the technology side, endurance for all these emerging
memory technologies remains a serious concern that prevent any to be used for their
purposed introduction. On the other hand, their integration and compatibility with
the fabrication process, depending on the material used for some memories, greatly
ease their adoption by industry and reduce the need for investment in new fabrication
lines.

1.2.2.1 RRAM

Resistive Random Access Memory (RRAM)1 is the first discovered and manufactured
type of emerging non volatile memory dating back to the 1960s but it only attracted
attention in the 2000s when it was made with back-end of line compatible materials.
Although in its general form RRAM embraces all resistive memories including PCM
and MRAM, we discuss in this section only about Oxide Random Access Memory
(OxRAM) and Conductive Bridge Random Access Memory (CBRAM). In the literature,

1 ↑RRAM® is a registered trademark in Japan and EU until 20/02/2023 [26]. ReRAM is also encoun-
tered in the literature.

17

1 Introduction & Contextualisation – 1.2 Memory technologies

Bottom Electrode

Top Electrode

Metal
Oxide

Oxygen
Vacancy

Oxygen
Ion

OxRAM

Filament

(a) OxRAM

Bottom Electrode

Active Top Electrode

Solid
Electrolyte

Metal
Atoms

CBRAM

Filament

(b) CBRAM

Figure 1.17: Different types of RRAM bitcell. Taken from [25]

RRAM are sometimes referred as filamentous RRAM. Indeed, these technologies
rely on a Conductive Filament (CF) inside an insulating material. OxRAM depends
on oxygen vacancies as filament while CBRAM uses metal ions (Figure 1.17). Set
operation is performed by applying a positive voltage across the device and reset
requires a negative voltage. This means that the selector cannot be a one way device
such as a diode and also slightly complicates write drivers to be reversible. Access
device can thus be a single transistor, an Ovonic Threshold Switch or none at all in a
crossbar array structure (Figure 1.16a).

It is often made from HfO2 which is a high-k dielectric (highly insulating) used
in transistor to make smaller grids and thus RRAM is easily integrated in current
fabrication lines. With a crossbar array structure, it should be the most dense on-
chip memory available, excluding 3D stacking technologies. It is aimed to replace
potentially SRAM in higher level cache, typically L3 [27] while L2 and L1 are expected
to remain with fast SRAM memory. Nonetheless, there are still challenges to reach
these goals with serious reserves on endurance and variability within an array.

First of all, RRAM requires higher voltage and current than conventional SRAM to
form and reset the CF. It requires bigger transistor to drive enough current (up to
100µA). Higher current also means it is harder to shrink the pitch of the metal between
lines due to IR-drop effect. Cycling between forming and resetting the CF ends up
damaging the cell with micro cracks or migrating material (oxygen or metal) cemented
up to the point where the cell is stuck in either LRS or HRS. Current technologies
have an estimated endurance between 10 million to a billion cycles [28, 29] which
is way too low for caches memory or even DRAM where the write bandwidth can be
over a billion writes per second. Wear levelling techniques must be used to mitigate
these bandwidth and equalize the wearing out on all the bitcells which slows down
the working frequency of RRAM.

RRAM has a medium On/Off ratio often combined with wide distribution (interme-
diate between Figure 1.15b and Figure 1.15c) which makes reading slower to ensure
the state of the bitcell. Another problem is the drift associated with the repeated

18

1 Introduction & Contextualisation – 1.2 Memory technologies

Top Electrode

Bottom Electrode

Phase-Change Material

Amorphous
Region

Insulator

PCRAM (Mushroom Structure)

(a) Mushroom PCM bitcell

PCRAM (Pillar Structure)

Top Electrode

Bottom Electrode

Amorphous
RegionInsulator

(b) Pillar PCM bitcell

Figure 1.18: Different types of PCM bitcell. Taken from [25]

read/write cycle. Both LRS and HRS distributions will shift independently for each cell
meaning that some cells will have a worsened ratio while others will see it improves
across the lifetime of the cell. Worsened ratio may overlap distribution rendering the
cell useless which can be alleviated with wear levelling to move data to extra bitcells.
Some array structure such as 2T2R [30] can be used to lessen low uniformity issues.

Overall, RRAM still has a promising future with write currents going down around
1µA, reading and programming times lower than 10 ns and a retention time of at least
10 years. Endurance above 1012 cycles have been reported [31] although it is still a little
too low for integrated cache memories. Power density due to higher write currents
may also be problematic for some power constrained applications. Highest On/Off
ratios are between 100 and 1000 which permits 4 level bitcells (2 bits) [32].

1.2.2.2 PCM

Phase Change Memory (PCM) is another type of resistive memory relying on the tran-
sition between amorphous and crystalline phase of a material, usually a chalcogenide.
These two phases have greatly different electrical resistance which is used to store
data. HRS corresponds to the amorphous phase, whereas crystalline is LRS. The reset
operation consists of sending a burst current to melt the material and let it cool down
to reach the amorphous phase. Set is done by sending a smaller current than reset
and let the material slowly crystallize. Set operation is thus seemingly slower than
reset. Contrary to RRAM, current is one way only as it is only used to heat the material
so the selector can now be a diode which is slightly more compact than a transistor.
Unfortunately, the high temperature needed to melt the material requires high current
for a short amount of time which makes writing an high power operation. Current
used to be over 1 mA and has now decreased to 250µA with voltage around 3 V [33]
similar to RRAM. Moreover, high temperature limits the density to prevent a write to
disturb neighbouring cells. Multiple designs coexist such as mushroom or pillar type
as shown in Figure 1.18, depending on the materials used.

19

1 Introduction & Contextualisation – 1.2 Memory technologies

Free Layer

Oxide Tunnel Barrier

Pinned Layer

In-Plane MTJ

(a) Plane MRAM bitcell

Perpendicular MTJ

Free Layer

Oxide Tunnel Barrier

Pinned Layer

(b) Perpendicular MRAM bitcell

Figure 1.19: Different types of MRAM bitcell. Taken from [25]

Similarly to RRAM, PCM is subject to endurance issues that are even worse due to
thermal expansion. It either creates voids in the cell until it gets stuck open or, due
to melting repeatedly, have material migrating and forming a permanent conductive
wire. Current technology has endurance between 1 million and a billion cycles [33–35],
which is better than most recent SLC NAND Flash. This is enough to replace the
former in fast permanent storage as SSD. Although heating and cooling down the
material takes time, it is still faster than Flash with write timings of 100 ns and even
less reported [33]. Given its better performance compared to Flash, PCM was the first
NVM sold in consumer electronics by Micron and Intel under the Optane brand name
with their 3D XPoint technology. Its On/Off ratio is also way better than RRAM up to
104 allowing multilevel cells to be used with 3 and even 4 bits [36]. Indeed, precise
control of current and timing during pulse gives highly repetitive resistance output in
contrast to RRAM which has very wide resistance distribution.

In perspective, PCM is planned to replace DRAM [34, 35, 37–39] in computing sys-
tems if its endurance is high enough. Otherwise, its use as SCM has already began
with Intel and Micron 3D XPoint technology. Read timings are in the tens of nanosec-
ond and write in the hundreds of nanoseconds. Write power is of concern due to
high drive current which makes it the most energy consuming memory to write a bit
with 10 pJ/bit whereas RRAM is around 100 fJ/bit and SRAM is even lower. Density is
limited due to thermal constraint but this is partially circumvented with 3D stacking.
Retention time is above 10 years thanks to the material stability in both phases. How-
ever, resistance drift due to thermal dilatation and cycling can be a problem in the
long term for multilevel cells.

1.2.2.3 MRAM

Magnetic Random Access Memory (MRAM), and more specifically Spin Transfer
Torque MRAM (STT-MRAM) is yet another kind of resistive memory using the mag-
netic orientation of a Magnetic Tunnel Junction to store data. A free layer that can take

20

1 Introduction & Contextualisation – 1.2 Memory technologies

Table 1.2: NVMs parameters. Data collected from [25, 28, 33, 43–45]

Cell Size Multibit Read Time Write Time Write Energy (/bit) Endurance

RRAM 4–12 F2 2 ∼10 ns 10–50 ns 0.1–10 pJ 106–1012

PCM 4–30 F2 4 10–60 ns 20–150 ns 10–500 pJ 107–1010

MRAM 6–50 F2 2 2–35 ns 3–50 ns 0.01–1 pJ 1012–1015

two different orientations and a fixed reference layer separated by an oxide barrier
make up the bitcell (Figure 1.19). If the layers have the same direction, the cell is in a
LRS and if they have opposite direction, then it is a HRS. Set is performed by sending
a current pulse in the wanted orientation and reset is done by reverting this current
pulse. Just like RRAM, write drivers must thus be reversible and this constrains the
device selector as well. Contrary to PCM, it does not require a lot of power to switch
state with current in the range of 100µA and write timing inferior to 10 ns [40, 41].
Endurance is the best advantage of MRAMs as it does not suffer from any thermal di-
latation or high current going through the cell. Estimated cell endurance are over 1012

cycles [25]. Voltage to operate the cell is also lower compared to previous memories
and within 1.5 V, there also reducing constraints on transistor size.

Unfortunately, magnetic materials required for the fabrication process are not
compatible with conventional CMOS technology which is still a problem to be solved.
Magnetic nature of the bitcell requires the storage to not be in a magnetic environment
that may disturb cells’ data which can limit the use for some applications. Heat is
also a limitation to the use of this memory in non controlled environment as it largely
reduces the data retention time. Finally, MRAM yields a low On/Off ratio with a narrow
distribution which makes multilevel cell harder to achieve, but not impossible [42].
3D stacking is still a work in progress [40] and should help improve the relatively
low density compared to RRAM or PCM [43]. Small nodes may also be problematic
due to magnetic field interference between cells. As such, MRAM is planned to be a
medium density memory compared to RRAM but its high speed and low power makes
it a suitable candidate to fully replace SRAM in cache memories thanks to its high
endurance [41, 43].

Emerging memory technologies have intermediate energy and timing between
either SRAM or DRAM and Flash. Non volatility removes static and dynamic power
consumption in the bitcell array which greatly improves energy efficiency. They
can replace several memories in the system, mainly DRAM as it is the most power
consuming one as well as the higher level cache. Non volatility also allow Flash
replacement and better system integration. Another possibility is their integration
as SCM in between DRAM and NAND Flash. However, they have limited endurance
that is too low to consider a full replacement as of today. Having a permanent storage
tightly coupled to CPU will cut down power loss over transmission line instead of
having multiple chip connected on a system bus. A summary of their characteristic
is given in Table 1.2.

21

1 Introduction & Contextualisation – 1.3 A new computing paradigm

1.3 A new computing paradigm
Now that we have introduced old and emerging memory technologies, we need to
explain why we need to revisit the standard architecture model to fit the new needs of
the industry. As we have seen, current memory technology are not really scalable with
permanent storage being done with spinning HDDs and tapes which both have very
high latency, low bandwidth and use mechanical parts that are more prone to failure.
Although both have seen tremendous improvement for data density, their high latency
and low throughput make them unsuitable for future high demanding uses. We first
introduce the rising demand for high throughput data treatment (big data) with the
use of AI, then we discuss the challenges this trend faces and raises and finally, we
introduce a proposed solution that is IMC.

1.3.1 Big Data
Since 1980, data storage has substantially increased and doubles every 40 months [46]
which is an exponential growth as shown in Figure 1.20. This trend is still valid as of
today but what changed is how this information is treated. What started with high
density information, mostly sensor data, is now a sea of low density information which
we need to extract the valuable droplets from:

• In finance, data now comes from stock variations but also analysis of political
discourses, behavioral analysis, press text analysis to predict the most accurately
how the stock will evolve;

• In social networks, text analysis, photo recognition, graph analysis and behav-
ioral analysis all require huge amount of data (and tracking);

• In informatics, database search, insertion and deletion are recurring operation
that are lengthy on terabytes dataset;

• In science, it includes: meteorology with the multiplication of sensor data and
higher precision with models containing billions of nodes; biology with DNA
analysis and pattern matching for protein modifications research; astrophysics
where telescopes’ data are harvested faster than they are treated leaving huge
untreated databases even after telescopes retirement; subatomic physics such
as particle accelerator that can generate terabytes of data in a second; medicine
that has very wide input dataset to look for correlation between lifestyles and
diseases; etc.

All of these are the consequences of the shift from industrial society to information
society where data is the new colorless gold. With the IoT, it will be further exacerbated,
but thankfully only 2 % of data is stored [47]. These new data as listed previously are
of great volume, vary largely in quality and type, are generated quite rapidly and thus
demand a fast treatment.

22

1 Introduction & Contextualisation – 1.3 A new computing paradigm

Figure 1.20: Quantity of data created per year. Only 2 % is stored, rest is treated then
thrown away. From [47]

Not only data quantity increases as well as its diversity, algorithms also evolved
with more complex access patterns. Graph processing with bunny hopping from
node to node are not predictable in their patterns and prevent any form of caching
relying on spatial locality. These irregular access patterns increase stress on memory
systems. Improvements in image processing led to stride access patterns where only
part of data is used in a regular way. But memory must still serve the full data to
accommodate caches leading to underutilisation of the ideal bandwidth. Combining
this with stencils application such as convolution used in filtering where data is
accessed in subpart of the total also decreases temporal locality with nowadays high
resolution pictures. All in all, we face an absurd amount of data whose algorithms
needed to manage them have complex access patterns reducing the effectiveness of
cache techniques. This forces data to be read and evicted from caches multiple times
increasing the energy and timing cost.

1.3.2 Proposed solution : memory computing
In this data intensive world, we have to treat data in an energy efficient way and with
high throughput. Standard computer architecture is compute centric rather than
data centric; it is built in order to execute the maximum number of operations in
the shortest amount of time but that does not equate to faster data treatment due
to memory hierarchy and its intrinsic latencies and limited bandwidth. Data centric
architecture is all about treating a massive amount of data in a parallel fashion while

23

1 Introduction & Contextualisation – 1.3 A new computing paradigm

Figure 1.21: Internal versus external memory bandwidth. From [48]

compute centric is about controlling the program path and needs the data to be
brought through a complex memory hierarchy designed to hinder the slow memory
timings.

The only foreseeable solution is to work at the bottleneck, i.e. the memory. As it is
the bottleneck, we cannot treat data faster than its external bandwidth and thus this
renders all cache levels and lower memories in the hierarchy obsolete. The data should
be handled where it resides, at the topmost level of hierarchy that is the permanent
storage or eventually the DRAM. A possible parallel is remote working rather than
office work where humans are data to be managed. By doing so, we remove the
morning and evening commute representing data transfer with its bottlenecks (roads,
railways, etc.), its latencies and its energy cost (electrical, gas, etc.). Another solution
is also to compute data where it is produced (local consumption) rather than to send
it to an external compute unit, whether it is local to the system or a remote server. But
this is not always applicable.

Why memory computing is a viable and promising solution? First, it removes most
of data transfers between the memory and the CPU or GPU. This yields timing and
power improvements by removing costly intermediate memories such as cache and
also slacken power constraint on the CPU (see dark silicon and heating problems in
section 1.1). Second, it takes advantage of the much higher internal bandwidth of the
memory, sometimes 100× faster than the external one (Figure 1.21). Not only this
can incidentally increase throughput but also reduce the average time of algorithms
execution. Third, it uses the full internal width of memory lines which is ranging from
100 up to 1000 larger data width, depending on the considered memory technology.

How does memory computing work? Multiples classes of solutions have been
proposed in the state-of-the-art and we can split them in roughly two groups: analog
computing in the bitcell array or digital computing after the SAs. The first group makes
extended use of basic electrical rules to compute logical operation such as NAND, OR or
XOR. It rely on the array interconnection between bitlines but is also heavily technology
dependent. More complex operations are performed through multiple successive
logical operations or with some additions to the periphery circuits. Second group adds
digital computing units in the periphery but may also use some analog pre-computing
performed in the array. Digital additions allow more complex operations such as
arithmetic ones (ADD, MUL, etc.) to be computed in place in single cycle. For a more
complete view on IMC techniques, refer to Chapter 2.

Note that memory computing is almost as old as digital computing itself. The

24

1 Introduction & Contextualisation – 1.3 A new computing paradigm

Figure 1.22: Memory computing research interest in Google Scholar (from [55]).
Search term are not precise enough as they include some result from
neurology (background noise).

very first paper that can be connected to IMC dates back to 1969 and proposes to
interleave memory with logic units to compute basic logic functions [49]. It can be
considered as a common ancestor to both IMC and FPGAs. A similar proposition is
found in [50] from 1970 that introduces compute caches with search, add and scale
operations. However, the first chip implementation leaps 20 years forward with a 8 kB
SRAM prototype reaching 1.7 GOPS on a discrete cosine transform application used
in video compression [51]. Those previous papers were not introducing solution to
the memory wall as they do not mention it, nonetheless the memory wall problem
has been known for more than 25 years [52]. Already in 1994, the memory was the
limiting factor, the von Neumann bottleneck, and the authors only state that scientists
and engineers should think outside the box without providing any hint or direction. A
first attempt was designed with the Terasys array [53] with 1-bit Arithmetic & Logical
Unit incorporated into SRAM memory chip for each column. It supports basic logic
operations with distributed computing approach and their own high level language.
It reached speedup between 5× to 50× versus single CRAY core. Another nail in the
coffin is a paper by D. Patterson et al. in 1997 that reports many programs spend most
of their time waiting for the memory [54]. It proposes an intelligent RAM that is vector
computing tightly coupled to DRAM and foresees up to 4.5× better energy efficiency
compared to conventional architecture.

25

1 Introduction & Contextualisation – 1.4 Conclusion

Since 2010, there has been a new surge of papers on IMC or Near-Memory Com-
puting indicating a real interest in this solution in both academics and industry
(Figure 1.22). Some questions are still open in the community, concerning mainly
more software points than hardware. The programmation of these new IMC devices
and their associated Instruction Set Architecture (ISA) is for now not debated with
everyone using homemade ISAs. RISC-V may be a starting point but it is a scalar
ISA rather than a vector one (see Chapter 3 for our own). How the instructions are
sent to the device or how it is synchronized with the rest of the system is also an
unanswered question (see Chapter 4 for our approach). Coherency issues are almost
non existent in the literature although they do exist as in every unified memory
system. Overall it is how it should be integrated in a real system with a software
Application Programming Interface (API) that also has hardware implications.

1.4 Conclusion
We have shown that the global context in the semiconductor industry is close to
reach a dead end. Moore’s law is coming to an end in the next few years after more
than 50 years of continuous growth (Figure 1.1). Dennard’s law has been broken
since 2005 which led to dark silicon, i.e. part of circuit that cannot be powered due to
power constraints and heat dissipation issues. Frequency scaling has also reached a
plateau around 2005, there also putting a cap on performance for single cores (Fig-
ure 1.4). Architectural improvements were the key to performance increase from 2005
to nowadays with the introduction of multicores CPU. Wider SIMD extension also
provided some boosts to treat vectors of data which is particularly useful for the more
demanding applications of today such as neural networks. To speed these applica-
tions even more and to improve their energy efficiency, general purpose GPUs were
introduced with thousands of processing elements executing the same instructions
simultaneously. FPGAs are now common in commercial datacenter but it is more a
marketing strategy than a definitive solution. Application specific accelerators were
also designed such as Google’s Tensor Processing Unit (TPU). Finally, the rising costs
of more advanced nodes make new chips more expensive per million gates. The
technological investments required to fabricate the sub 10 nm nodes are astronomical
and leave very few foundries choice (Figure 1.9) which also increases prices. All in all,
semiconductor industry is at the end of an era after pushing everything it could to the
extreme, both technologically (smaller nodes, better materials) and architecturally
(SIMD, multicores, etc.).

All of the previous points were only tackling the problem at the compute or logic
level but never at the memory level while the memory is the limiting factor (Figure 1.7)
either in bandwidth (memory wall or von Neumann bottleneck) and in efficiency as
data transfer is costly. Recent new memory technologies such as HBM and HBM2
partly reduced the gap between GPU and memory performance, but this gap still
remains. In summary, we do not need to change how we treat the data but where
we treat it. Thus, we need a shift from compute centric to data centric architectures

26

1 Introduction & Contextualisation – 1.4 Conclusion

where data is the focus point rather than the processing element, especially in the era
of big data and AI. This shift should improve energy efficiency in the context of better
energy efficient systems to meet the requirements of the Paris Agreements, while still
increasing performance with a limited energy budget.

Memory computing is a promising solution to these problems. It satisfies the energy
efficiency part by removing useless caches and memories in the system. It offers better
performance in vector computing by profiting from the internal memory bandwidth.
Emerging NVM technologies offer promising performances such as better read/write
energies and faster timings. Their compatibility with CMOS process grants better
integration and higher density than DRAM. Non volatility paves the way to a unified
circuit containing memory for permanent storage and computing, all in a single chip
using 3D integration technologies. This is already envisioned in the literature as the
next leap forward [24].

27

Bibliography

[1] Gordon E Moore. “Cramming more components onto integrated circuits”. In:
38.8 (1965), p. 4 (cit. on p. 3).

[2] Jan Rabaey. Low Power Design Essentials. Integrated Circuits and Systems.
Boston, MA: Springer US, 2009. ISBN: 978-0-387-71712-8. DOI: 10.1007/978-
0-387-71713-5. URL: http://link.springer.com/10.1007/978-0-
387-71713-5 (visited on 2021-08-30) (cit. on pp. 4, 5).

[3] Nam Sung Kim et al. “Leakage current: Moore’s law meets static power”. In:
Computer 36.12 (2003-12), pp. 68–75. ISSN: 0018-9162. DOI: 10.1109/MC.
2003.1250885. URL:http://ieeexplore.ieee.org/document/1250885/
(visited on 2022-05-31) (cit. on p. 4).

[4] Stephen W. Keckler et al. “GPUs and the Future of Parallel Computing”. In: IEEE
Micro 31.5 (2011-09), pp. 7–17. ISSN: 0272-1732. DOI: 10.1109/MM.2011.89.
URL: http://ieeexplore.ieee.org/document/6045685/ (visited on
2022-05-25) (cit. on p. 4).

[5] R.H. Dennard et al. “Design of ion-implanted MOSFET’s with very small physi-
cal dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (1974-10), pp. 256–
268. ISSN: 1558-173X. DOI: 10.1109/JSSC.1974.1050511 (cit. on p. 4).

[6] Anja Bog. “The Free Lunch Is Over_ A Fundamental Turn Toward Concurrency
in Software”. In: (), p. 8 (cit. on p. 4).

[7] Andrew Danowitz et al. “CPU DB: recording microprocessor history”. In: Com-
munications of the ACM 55.4 (2012-04-01), pp. 55–63. ISSN: 0001-0782. DOI:
10.1145/2133806.2133822. URL: https://doi.org/10.1145/2133806.
2133822 (visited on 2022-05-25) (cit. on p. 5).

[8] AMD Ryzen™ Threadripper™ 3990X Processor. URL: https://www.amd.
com/en/products/cpu/amd-ryzen-threadripper-3990x (visited on
2022-07-13) (cit. on p. 5).

[9] H. Esmaeilzadeh et al. “Dark silicon and the end of multicore scaling”. In:
2011 38th Annual International Symposium on Computer Architecture (ISCA).
2011-06, pp. 365–376 (cit. on p. 5).

[10] Xeon Silver 4116 - Intel - WikiChip. URL: https://en.wikichip.org/wiki/
intel/xeon_silver/4116 (visited on 2022-07-05) (cit. on p. 6).

[11] John L Hennessy. Computer Architecture: A Quantitative Approach (cit. on p. 6).

118

https://doi.org/10.1007/978-0-387-71713-5
https://doi.org/10.1007/978-0-387-71713-5
http://link.springer.com/10.1007/978-0-387-71713-5
http://link.springer.com/10.1007/978-0-387-71713-5
https://doi.org/10.1109/MC.2003.1250885
https://doi.org/10.1109/MC.2003.1250885
http://ieeexplore.ieee.org/document/1250885/
https://doi.org/10.1109/MM.2011.89
http://ieeexplore.ieee.org/document/6045685/
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1145/2133806.2133822
https://doi.org/10.1145/2133806.2133822
https://doi.org/10.1145/2133806.2133822
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://en.wikichip.org/wiki/intel/xeon_silver/4116
https://en.wikichip.org/wiki/intel/xeon_silver/4116

Bibliography

[12] Chris Gregg and Kim Hazelwood. “Where is the data? Why you cannot debate
CPU vs. GPU performance without the answer”. In: (IEEE ISPASS) IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software. 2011-04,
pp. 134–144. DOI: 10.1109/ISPASS.2011.5762730 (cit. on p. 7).

[13] June 2022 | TOP500. URL: https://www.top500.org/lists/top500/
2022/06/ (visited on 2022-07-13) (cit. on pp. 7, 8).

[14] Bill Dally. “To exascale and Beyond”. In: Supercomputing. 2010. URL: https://
www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf
(visited on 2021-11-11) (cit. on p. 7).

[15] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In:
(2018), p. 19 (cit. on p. 7).

[16] Hadi Esmaeilzadeh et al. “Looking back on the language and hardware rev-
olutions: measured power, performance, and scaling”. In: Proceedings of the
sixteenth international conference on Architectural support for programming
languages and operating systems. ASPLOS XVI. New York, NY, USA: Association
for Computing Machinery, 2011-03-05, pp. 319–332. ISBN: 978-1-4503-0266-1.
DOI: 10.1145/1950365.1950402. URL: https://doi.org/10.1145/
1950365.1950402 (visited on 2022-07-04) (cit. on p. 7).

[17] M. Horowitz. “1.1 Computing’s energy problem (and what we can do about it)”.
In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC). 2014-02, pp. 10–14. DOI: 10.1109/ISSCC.2014.6757323
(cit. on p. 8).

[18] Valeria Bertacco. “Re-Imagining Scalable System Design”. In: 2018 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC). 2018
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC). 2018-10, pp. ix–xiii. DOI: 10.1109/VLSI-SoC.2018.8644750 (cit. on
p. 9).

[19] Hoan Nguyen et al. “A 7NM Double-Pumped 6R6W Register File for Machine
Learning Memory”. In: 2018 IEEE Symposium on VLSI Circuits. 2018 IEEE
Symposium on VLSI Circuits. 2018-06, pp. 1–2. DOI: 10.1109/VLSIC.2018.
8502393 (cit. on p. 10).

[20] Yoongu Kim et al. “Flipping bits in memory without accessing them: An experi-
mental study of DRAM disturbance errors”. In: 2014 ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA). ISSN: 1063-6897. 2014-06,
pp. 361–372. DOI: 10.1109/ISCA.2014.6853210 (cit. on p. 12).

[21] Micron. 176-Layer NAND. en. 2022. URL: https : / / www . micron . com /
products/nand- flash/176- layer- nand (visited on 2022-07-13) (cit.
on p. 13).

[22] Lecture 21: Storage. URL:https://www.cs.utexas.edu/users/mckinley/
352/lectures/21.pdf (visited on 2022-07-13) (cit. on p. 14).

119

https://doi.org/10.1109/ISPASS.2011.5762730
https://www.top500.org/lists/top500/2022/06/
https://www.top500.org/lists/top500/2022/06/
https://www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf
https://www.nvidia.com/content/PDF/sc_2010/theater/Dally_SC10.pdf
https://doi.org/10.1145/1950365.1950402
https://doi.org/10.1145/1950365.1950402
https://doi.org/10.1145/1950365.1950402
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/VLSI-SoC.2018.8644750
https://doi.org/10.1109/VLSIC.2018.8502393
https://doi.org/10.1109/VLSIC.2018.8502393
https://doi.org/10.1109/ISCA.2014.6853210
https://www.micron.com/products/nand-flash/176-layer-nand
https://www.micron.com/products/nand-flash/176-layer-nand
https://www.cs.utexas.edu/users/mckinley/352/lectures/21.pdf
https://www.cs.utexas.edu/users/mckinley/352/lectures/21.pdf

Bibliography

[23] IBM Makes Tape Storage Better Than Ever. IEEE Spectrum. 2020-12-17. URL:
https://spectrum.ieee.org/tape-is-back-and-better-than-
ever (visited on 2022-07-13) (cit. on p. 14).

[24] M. M. Sabry Aly et al. “Energy-Efficient Abundant-Data Computing: The N3XT
1,000x”. In: Computer 48.12 (2015-12), pp. 24–33. ISSN: 0018-9162. DOI: 10.
1109/MC.2015.376 (cit. on pp. 17, 27).

[25] Shimeng Yu and Pai-Yu Chen. “Emerging Memory Technologies: Recent Trends
and Prospects”. In: IEEE Solid-State Circuits Magazine 8.2 (2016), pp. 43–56.
ISSN: 1943-0590. DOI: 10.1109/MSSC.2016.2546199 (cit. on pp. 18–21).

[26] SHARP KABUSHIKI KAISHA. EUIPO - eSearch. 2003. URL: https://euipo.
europa.eu/eSearch/#details/trademarks/003062791 (visited on
2022-09-06) (cit. on p. 17).

[27] Alexander Hankin et al. “Evaluation of Non-Volatile Memory Based Last Level
Cache Given Modern Use Case Behavior”. In: 2019 IEEE International Sym-
posium on Workload Characterization (IISWC). 2019-11, pp. 143–154. DOI:
10.1109/IISWC47752.2019.9042051 (cit. on p. 18).

[28] H.-S. Philip Wong et al. “Metal–Oxide RRAM”. In: Proceedings of the IEEE
100.6 (2012-06), pp. 1951–1970. ISSN: 1558-2256. DOI: 10.1109/JPROC.2012.
2190369 (cit. on pp. 18, 21).

[29] Yangyin Chen. “ReRAM: History, Status, and Future”. In: IEEE Transactions
on Electron Devices 67.4 (2020-04), pp. 1420–1433. ISSN: 0018-9383, 1557-9646.
DOI: 10.1109/TED.2019.2961505. URL: https://ieeexplore.ieee.
org/document/8961211/ (visited on 2022-06-04) (cit. on p. 18).

[30] M. Ezzadeen et al. “Low-Overhead Implementation of Binarized Neural Net-
works Employing Robust 2T2R Resistive RAM Bridges”. In: ESSCIRC 2021 - IEEE
47th European Solid State Circuits Conference (ESSCIRC). 2021-09, pp. 83–86.
DOI: 10.1109/ESSCIRC53450.2021.9567742 (cit. on p. 19).

[31] Young-Bae Kim et al. “Bi-layered RRAM with unlimited endurance and ex-
tremely uniform switching”. In: 2011 Symposium on VLSI Technology - Digest
of Technical Papers. 2011-06, pp. 52–53 (cit. on p. 19).

[32] Y. S. Chen et al. “Highly scalable hafnium oxide memory with improvements of
resistive distribution and read disturb immunity”. In: 2009 IEEE International
Electron Devices Meeting (IEDM). 2009-12, pp. 1–4. DOI: 10.1109/IEDM.2009.
5424411 (cit. on p. 19).

[33] H.-S. Philip Wong et al. “Phase Change Memory”. In: Proceedings of the IEEE
98.12 (2010-12), pp. 2201–2227. ISSN: 1558-2256. DOI: 10.1109/JPROC.2010.
2070050 (cit. on pp. 19–21).

[34] Moinuddin K. Qureshi et al. “Enhancing lifetime and security of PCM-based
Main Memory with Start-Gap Wear Leveling”. In: 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 2009-12, pp. 14–23.
DOI: 10.1145/1669112.1669117 (cit. on p. 20).

120

https://spectrum.ieee.org/tape-is-back-and-better-than-ever
https://spectrum.ieee.org/tape-is-back-and-better-than-ever
https://doi.org/10.1109/MC.2015.376
https://doi.org/10.1109/MC.2015.376
https://doi.org/10.1109/MSSC.2016.2546199
https://euipo.europa.eu/eSearch/#details/trademarks/003062791
https://euipo.europa.eu/eSearch/#details/trademarks/003062791
https://doi.org/10.1109/IISWC47752.2019.9042051
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1109/TED.2019.2961505
https://ieeexplore.ieee.org/document/8961211/
https://ieeexplore.ieee.org/document/8961211/
https://doi.org/10.1109/ESSCIRC53450.2021.9567742
https://doi.org/10.1109/IEDM.2009.5424411
https://doi.org/10.1109/IEDM.2009.5424411
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1145/1669112.1669117

Bibliography

[35] Andre Seznec. “A Phase Change Memory as a Secure Main Memory”. In: IEEE
Computer Architecture Letters 9.1 (2010-01), pp. 5–8. ISSN: 2473-2575. DOI:
10.1109/L-CA.2010.2 (cit. on p. 20).

[36] T. Nirschl et al. “Write Strategies for 2 and 4-bit Multi-Level Phase-Change Mem-
ory”. In: 2007 IEEE International Electron Devices Meeting. 2007-12, pp. 461–
464. DOI: 10.1109/IEDM.2007.4418973 (cit. on p. 20).

[37] Benjamin C. Lee et al. “Phase-Change Technology and the Future of Main
Memory”. In: IEEE Micro 30.1 (2010-01), pp. 143–143. ISSN: 1937-4143. DOI:
10.1109/MM.2010.24 (cit. on p. 20).

[38] Jaehyun Park, Donghwa Shin, and Hyung Gyu Lee. “Design space exploration
of row buffer architecture for phase change memory with LPDDR2-NVM in-
terface”. In: 2015 IFIP/IEEE International Conference on Very Large Scale In-
tegration (VLSI-SoC). 2015-10, pp. 104–109. DOI: 10.1109/VLSI-SoC.2015.
7314400 (cit. on p. 20).

[39] Benjamin C. Lee et al. “Architecting phase change memory as a scalable dram
alternative”. In: Proceedings of the 36th annual international symposium on
Computer architecture. ISCA ’09. New York, NY, USA: Association for Comput-
ing Machinery, 2009-06, pp. 2–13. ISBN: 978-1-60558-526-0. DOI: 10.1145/
1555754.1555758. URL: https://doi.org/10.1145/1555754.1555758
(visited on 2022-09-05) (cit. on p. 20).

[40] Yiming Huai et al. “High Density 3D Cross-Point STT-MRAM”. In: 2018 IEEE
International Memory Workshop (IMW). 2018-05, pp. 1–4. DOI: 10.1109/IMW.
2018.8388833 (cit. on p. 21).

[41] An Chen. “A review of emerging non-volatile memory (NVM) technologies and
applications”. en. In: Solid-State Electronics. Extended papers selected from
ESSDERC 2015 125 (2016-11), pp. 25–38. ISSN: 0038-1101. DOI: 10.1016/j.
sse.2016.07.006. URL: http://www.sciencedirect.com/science/
article/pii/S0038110116300867 (visited on 2020-09-07) (cit. on p. 21).

[42] Sanjay Prajapati and Brajesh Kumar Kaushik. “Area and Energy Efficient Series
Multilevel Cell STT-MRAMs for Optimized Read–Write Operations”. In: IEEE
Transactions on Magnetics 55.1 (2019-01). Conference Name: IEEE Transactions
on Magnetics, pp. 1–10. ISSN: 1941-0069. DOI: 10.1109/TMAG.2018.2875885
(cit. on p. 21).

[43] Sparsh Mittal, Jeffrey S. Vetter, and Dong Li. “A Survey Of Architectural Ap-
proaches for Managing Embedded DRAM and Non-Volatile On-Chip Caches”.
In: IEEE Transactions on Parallel and Distributed Systems 26.6 (2015-06), pp. 1524–
1537. ISSN: 2161-9883. DOI: 10.1109/TPDS.2014.2324563 (cit. on p. 21).

[44] Jalil Boukhobza et al. “Emerging NVM: A Survey on Architectural Integration
and Research Challenges”. In: ACM Transactions on Design Automation of
Electronic Systems 23 (2018-01). DOI: 10.1145/3131848 (cit. on p. 21).

121

https://doi.org/10.1109/L-CA.2010.2
https://doi.org/10.1109/IEDM.2007.4418973
https://doi.org/10.1109/MM.2010.24
https://doi.org/10.1109/VLSI-SoC.2015.7314400
https://doi.org/10.1109/VLSI-SoC.2015.7314400
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1109/IMW.2018.8388833
https://doi.org/10.1109/IMW.2018.8388833
https://doi.org/10.1016/j.sse.2016.07.006
https://doi.org/10.1016/j.sse.2016.07.006
http://www.sciencedirect.com/science/article/pii/S0038110116300867
http://www.sciencedirect.com/science/article/pii/S0038110116300867
https://doi.org/10.1109/TMAG.2018.2875885
https://doi.org/10.1109/TPDS.2014.2324563
https://doi.org/10.1145/3131848

Bibliography

[45] Gianlucca O. Puglia et al. “Non-Volatile Memory File Systems: A Survey”. In:
IEEE Access 7 (2019), pp. 25836–25871. ISSN: 2169-3536. DOI: 10.1109/ACCESS.
2019.2899463 (cit. on p. 21).

[46] Martin Hilbert and Priscila López. “The World’s Technological Capacity to Store,
Communicate, and Compute Information”. en. In: Science 332.6025 (2011-04),
pp. 60–65. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science.1200970.
URL: https://www.science.org/doi/10.1126/science.1200970
(visited on 2022-07-13) (cit. on p. 22).

[47] Data Durability, and Back-up at scale: A tale of "the Tape". en. URL: https:
//community.ibm.com/community/user/storage/blogs/shawn-
brume1/2020/07/14/data-durability-and-back-up-at-scale-a-
tale-of-the (visited on 2022-07-13) (cit. on pp. 22, 23).

[48] Jingcheng Wang et al. “A 28-nm Compute SRAM With Bit-Serial Logic/Arithmetic
Operations for Programmable In-Memory Vector Computing”. In: IEEE Journal
of Solid-State Circuits (2019-11), pp. 1–11. ISSN: 1558-173X. DOI: 10.1109/
JSSC.2019.2939682 (cit. on p. 24).

[49] W. H. Kautz. “Cellular Logic-in-Memory Arrays”. In: IEEE Transactions on
Computers C-18.8 (1969-08), pp. 719–727. ISSN: 0018-9340. DOI: 10.1109/T-
C.1969.222754 (cit. on p. 25).

[50] H. S. Stone. “A Logic-in-Memory Computer”. In: IEEE Transactions on Com-
puters C-19.1 (1970-01), pp. 73–78. ISSN: 0018-9340. DOI: 10.1109/TC.1970.
5008902. URL: https://ieeexplore.ieee.org/abstract/document/
5008902 (cit. on p. 25).

[51] D. G. Elliott, W. M. Snelgrove, and M. Stumm. “Computational Ram: A Memory-
simd Hybrid And Its Application To Dsp”. In: 1992 Proceedings of the IEEE
Custom Integrated Circuits Conference. 1992 Proceedings of the IEEE Custom
Integrated Circuits Conference. 1992-05, pp. 30.6.1–30.6.4. DOI: 10.1109/
CICC.1992.591879. URL: http://www.eecg.toronto.edu/~dunc/
cram/ (cit. on p. 25).

[52] Wm. A. Wulf and Sally A. McKee. “Hitting the memory wall: implications of
the obvious”. In: ACM SIGARCH Computer Architecture News 23.1 (1995-03),
pp. 20–24. URL: https://dl.acm.org/citation.cfm?id=216588 (cit. on
p. 25).

[53] M. Gokhale, B. Holmes, and K. Iobst. “Processing in memory: the Terasys
massively parallel PIM array”. In: Computer 28.4 (1995-04), pp. 23–31. ISSN:
0018-9162. DOI: 10.1109/2.375174. URL: https://ieeexplore.ieee.
org/abstract/document/375174 (cit. on p. 25).

[54] D. Patterson et al. “A case for intelligent RAM”. In: IEEE Micro 17.2 (1997-03),
pp. 34–44. ISSN: 0272-1732. DOI: 10.1109/40.592312 (cit. on p. 25).

122

https://doi.org/10.1109/ACCESS.2019.2899463
https://doi.org/10.1109/ACCESS.2019.2899463
https://doi.org/10.1126/science.1200970
https://www.science.org/doi/10.1126/science.1200970
https://community.ibm.com/community/user/storage/blogs/shawn-brume1/2020/07/14/data-durability-and-back-up-at-scale-a-tale-of-the
https://community.ibm.com/community/user/storage/blogs/shawn-brume1/2020/07/14/data-durability-and-back-up-at-scale-a-tale-of-the
https://community.ibm.com/community/user/storage/blogs/shawn-brume1/2020/07/14/data-durability-and-back-up-at-scale-a-tale-of-the
https://community.ibm.com/community/user/storage/blogs/shawn-brume1/2020/07/14/data-durability-and-back-up-at-scale-a-tale-of-the
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/T-C.1969.222754
https://doi.org/10.1109/T-C.1969.222754
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.1109/TC.1970.5008902
https://ieeexplore.ieee.org/abstract/document/5008902
https://ieeexplore.ieee.org/abstract/document/5008902
https://doi.org/10.1109/CICC.1992.591879
https://doi.org/10.1109/CICC.1992.591879
http://www.eecg.toronto.edu/~dunc/cram/
http://www.eecg.toronto.edu/~dunc/cram/
https://dl.acm.org/citation.cfm?id=216588
https://doi.org/10.1109/2.375174
https://ieeexplore.ieee.org/abstract/document/375174
https://ieeexplore.ieee.org/abstract/document/375174
https://doi.org/10.1109/40.592312

Bibliography

[55] Yiran Chen. “Reshaping Future Computing Systems With Emerging Nonvolatile
Memory Technologies”. In: IEEE Micro 39.1 (2019-01), pp. 54–57. ISSN: 1937-
4143. DOI: 10.1109/MM.2018.2885588 (cit. on p. 25).

[56] Roman Gauchi. “Exploration of Reconfigurable Tiles of Computing-in-Memory
Architecture for Data-intensive Applications”. fr. PhD thesis. Université Greno-
ble Alpes: Université Grenoble Alpes, 2021.

[57] K. C. Akyel et al. “DRC2: Dynamically Reconfigurable Computing Circuit based
on memory architecture”. In: 2016 IEEE International Conference on Rebooting
Computing (ICRC). 2016-10, pp. 1–8. DOI: 10.1109/ICRC.2016.7738698.
URL: http://ieeexplore.ieee.org/document/7738698/.

[58] S. Aga et al. “Compute Caches”. In: 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 2017-02, pp. 481–492. DOI: 10.
1109/HPCA.2017.21. URL: http://ieeexplore.ieee.org/document/
7920849/.

[59] Jianmin Zeng et al. “DM-IMCA: A dual-mode in-memory computing architec-
ture for general purpose processing”. In: IEICE Electronics Express 17.4 (2020),
pp. 20200005–20200005. DOI: 10.1587/elex.17.20200005.

[60] R. Khaddam-Aljameh et al. “An SRAM-Based Multibit In-Memory Matrix-
Vector Multiplier With a Precision That Scales Linearly in Area, Time, and
Power”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
(2020), pp. 1–14. ISSN: 1557-9999. DOI: 10.1109/TVLSI.2020.3037871.

[61] H. Chen et al. “Configurable 8T SRAM for Enbling in-Memory Computing”. In:
2019 2nd International Conference on Communication Engineering and Tech-
nology (ICCET). 2019-04, pp. 139–142. DOI: 10.1109/ICCET.2019.8726871.

[62] Zhiting Lin et al. “In-Memory Computing With Double Word Lines and Three
Read Ports for Four Operands”. In: IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems 28.5 (2020-05), pp. 1316–1320. ISSN: 1557-9999. DOI:
10.1109/TVLSI.2020.2976099.

[63] A. Agrawal et al. “X-SRAM: Enabling In-Memory Boolean Computations in
CMOS Static Random Access Memories”. In: IEEE Transactions on Circuits and
Systems I: Regular Papers 65.12 (2018-12), pp. 4219–4232. ISSN: 1549-8328. DOI:
10.1109/TCSI.2018.2848999.

[64] C. Eckert et al. “Neural Cache: Bit-Serial In-Cache Acceleration of Deep Neural
Networks”. In: 2018 ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA). 2018-06, pp. 383–396. DOI: 10.1109/ISCA.2018.
00040. URL: https://ieeexplore.ieee.org/document/8416842.

[65] Y. Zhang et al. “Recryptor: A reconfigurable in-memory cryptographic Cortex-
M0 processor for IoT”. In: 2017 Symposium on VLSI Circuits. 2017-06, pp. C264–
C265. DOI: 10.23919/VLSIC.2017.8008501. URL: http://ieeexplore.
ieee.org/document/8008501/.

123

https://doi.org/10.1109/MM.2018.2885588
https://doi.org/10.1109/ICRC.2016.7738698
http://ieeexplore.ieee.org/document/7738698/
https://doi.org/10.1109/HPCA.2017.21
https://doi.org/10.1109/HPCA.2017.21
http://ieeexplore.ieee.org/document/7920849/
http://ieeexplore.ieee.org/document/7920849/
https://doi.org/10.1587/elex.17.20200005
https://doi.org/10.1109/TVLSI.2020.3037871
https://doi.org/10.1109/ICCET.2019.8726871
https://doi.org/10.1109/TVLSI.2020.2976099
https://doi.org/10.1109/TCSI.2018.2848999
https://doi.org/10.1109/ISCA.2018.00040
https://doi.org/10.1109/ISCA.2018.00040
https://ieeexplore.ieee.org/document/8416842
https://doi.org/10.23919/VLSIC.2017.8008501
http://ieeexplore.ieee.org/document/8008501/
http://ieeexplore.ieee.org/document/8008501/

Bibliography

[66] Z. Jiang et al. “XNOR-SRAM: In-Memory Computing SRAM Macro for Bi-
nary/Ternary Deep Neural Networks”. In: 2018 IEEE Symposium on VLSI Tech-
nology. 2018-06, pp. 173–174. DOI: 10.1109/VLSIT.2018.8510687.

[67] J. Wang et al. “A Compute SRAM with Bit-Serial Integer/Floating-Point Op-
erations for Programmable In-Memory Vector Acceleration”. In: 2019 IEEE
International Solid- State Circuits Conference - (ISSCC). San Francisco, USA,
2019-02, pp. 224–226. DOI: 10.1109/ISSCC.2019.8662419.

[68] D. Jeon et al. “A 23-mW Face Recognition Processor with Mostly-Read 5T
Memory in 40-nm CMOS”. In: IEEE Journal of Solid-State Circuits 52.6 (2017-
06), pp. 1628–1642. ISSN: 0018-9200. DOI: 10.1109/JSSC.2017.2661838.
URL: http://ieeexplore.ieee.org/document/7859309/.

[69] L. Fick et al. “Analog in-memory subthreshold deep neural network acceler-
ator”. In: 2017 IEEE Custom Integrated Circuits Conference (CICC). 2017-04,
pp. 1–4. DOI: 10.1109/CICC.2017.7993629.

[70] H. E. Sumbul et al. “A 2.9–33.0 TOPS/W Reconfigurable 1-D/2-D Compute-
Near-Memory Inference Accelerator in 10-nm FinFET CMOS”. In: IEEE Solid-
State Circuits Letters 3 (2020), pp. 118–121. ISSN: 2573-9603. DOI: 10.1109/
LSSC.2020.3007185.

[71] A. Biswas and A. P. Chandrakasan. “Conv-RAM: An energy-efficient SRAM
with embedded convolution computation for low-power CNN-based machine
learning applications”. In: 2018 IEEE International Solid - State Circuits Confer-
ence - (ISSCC). 2018-02, pp. 488–490. DOI: 10.1109/ISSCC.2018.8310397.

[72] J. Saikia et al. “K-Nearest Neighbor Hardware Accelerator Using In-Memory
Computing SRAM”. In: 2019 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED). 2019-07, pp. 1–6. DOI: 10.1109/ISLPED.
2019.8824822.

[73] William Simon et al. “A Fast, Reliable and Wide-Voltage-Range In-Memory
Computing Architecture”. In: ACM, 2019-02, p. 83. ISBN: 978-1-4503-6725-7.
DOI: 10.1145/3316781.3317741. URL: http://dl.acm.org/citation.
cfm?id=3316781.3317741 (visited on 2019-07-08).

[74] S. Srinivasa et al. “ROBIN: Monolithic-3D SRAM for Enhanced Robustness
with In-Memory Computation Support”. In: IEEE Transactions on Circuits and
Systems I: Regular Papers 66.7 (2019-07), pp. 2533–2545. ISSN: 1549-8328. DOI:
10.1109/TCSI.2019.2897497.

[75] Onur Mutlu et al. “Processing data where it makes sense: Enabling in-memory
computation”. In: Microprocessors and Microsystems 67 (2019-06), pp. 28–41.
ISSN: 0141-9331. DOI: 10.1016/j.micpro.2019.01.009. URL: http://www.
sciencedirect.com/science/article/pii/S0141933118302291 (vis-
ited on 2019-07-09).

124

https://doi.org/10.1109/VLSIT.2018.8510687
https://doi.org/10.1109/ISSCC.2019.8662419
https://doi.org/10.1109/JSSC.2017.2661838
http://ieeexplore.ieee.org/document/7859309/
https://doi.org/10.1109/CICC.2017.7993629
https://doi.org/10.1109/LSSC.2020.3007185
https://doi.org/10.1109/LSSC.2020.3007185
https://doi.org/10.1109/ISSCC.2018.8310397
https://doi.org/10.1109/ISLPED.2019.8824822
https://doi.org/10.1109/ISLPED.2019.8824822
https://doi.org/10.1145/3316781.3317741
http://dl.acm.org/citation.cfm?id=3316781.3317741
http://dl.acm.org/citation.cfm?id=3316781.3317741
https://doi.org/10.1109/TCSI.2019.2897497
https://doi.org/10.1016/j.micpro.2019.01.009
http://www.sciencedirect.com/science/article/pii/S0141933118302291
http://www.sciencedirect.com/science/article/pii/S0141933118302291

Bibliography

[76] S. Jeloka et al. “A 28 nm Configurable Memory (TCAM/BCAM/SRAM) Using
Push-Rule 6T Bit Cell Enabling Logic-in-Memory”. In: IEEE Journal of Solid-
State Circuits 51.4 (2016-04), pp. 1009–1021. ISSN: 0018-9200. DOI: 10.1109/
JSSC.2016.2515510. URL: http://ieeexplore.ieee.org/document/
7400984/.

[77] W. Khwa et al. “A 65nm 4Kb algorithm-dependent computing-in-memory
SRAM unit-macro with 2.3ns and 55.8TOPS/W fully parallel product-sum
operation for binary DNN edge processors”. In: 2018 IEEE International Solid
- State Circuits Conference - (ISSCC). 2018-02, pp. 496–498. DOI: 10.1109/
ISSCC.2018.8310401.

[78] Jinseok Kim et al. “Area-Efficient and Variation-Tolerant In-Memory BNN
Computing using 6T SRAM Array”. en. In: VLSI Circuits (2019), p. 2.

[79] J. Zhang, Z. Wang, and N. Verma. “In-Memory Computation of a Machine-
Learning Classifier in a Standard 6T SRAM Array”. In: IEEE Journal of Solid-
State Circuits 52.4 (2017-04), pp. 915–924. ISSN: 0018-9200. DOI: 10.1109/
JSSC.2016.2642198.

[80] K. Ando et al. “BRein memory: A 13-layer 4.2 K neuron/0.8 M synapse bi-
nary/ternary reconfigurable in-memory deep neural network accelerator in 65
nm CMOS”. In: 2017 Symposium on VLSI Circuits. 2017-06, pp. C24–C25. DOI:
10.23919/VLSIC.2017.8008533.

[81] M. Kang, S. K. Gonugondla, and N. R. Shanbhag. “A 19.4 nJ/decision 364K
decisions/s in-memory random forest classifier in 6T SRAM array”. In: ESSCIRC
2017 - 43rd IEEE European Solid State Circuits Conference. 2017-09, pp. 263–266.
DOI: 10.1109/ESSCIRC.2017.8094576.

[82] Jian-Wei Su et al. “15.2 A 28nm 64Kb Inference-Training Two-Way Transpose
Multibit 6T SRAM Compute-in-Memory Macro for AI Edge Chips”. In: 2020
IEEE International Solid- State Circuits Conference - (ISSCC). 2020-02, pp. 240–
242. DOI: 10.1109/ISSCC19947.2020.9062949.

[83] Vivek Seshadri et al. “RowClone: Fast and energy-efficient in-DRAM bulk data
copy and initialization”. In: 2013 46th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). 2013-12, pp. 185–197.

[84] Dongping Zhang et al. “TOP-PIM: Throughput-oriented Programmable Pro-
cessing in Memory”. In: Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing. HPDC ’14. New York,
NY, USA: ACM, 2014, pp. 85–98. ISBN: 978-1-4503-2749-7. DOI: 10.1145/
2600212.2600213. URL: http://doi.acm.org/10.1145/2600212.
2600213 (visited on 2019-02-08).

125

https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1109/JSSC.2016.2515510
http://ieeexplore.ieee.org/document/7400984/
http://ieeexplore.ieee.org/document/7400984/
https://doi.org/10.1109/ISSCC.2018.8310401
https://doi.org/10.1109/ISSCC.2018.8310401
https://doi.org/10.1109/JSSC.2016.2642198
https://doi.org/10.1109/JSSC.2016.2642198
https://doi.org/10.23919/VLSIC.2017.8008533
https://doi.org/10.1109/ESSCIRC.2017.8094576
https://doi.org/10.1109/ISSCC19947.2020.9062949
https://doi.org/10.1145/2600212.2600213
https://doi.org/10.1145/2600212.2600213
http://doi.acm.org/10.1145/2600212.2600213
http://doi.acm.org/10.1145/2600212.2600213

Bibliography

[85] Vivek Seshadri et al. “Ambit: In-memory Accelerator for Bulk Bitwise Opera-
tions Using Commodity DRAM Technology”. In: Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture. MICRO-50 ’17.
New York, NY, USA: ACM, 2017, pp. 273–287. ISBN: 978-1-4503-4952-9. DOI:
10.1145/3123939.3124544. URL: http://doi.acm.org/10.1145/
3123939.3124544 (visited on 2019-02-08).

[86] Amirali Boroumand et al. “Google Workloads for Consumer Devices: Miti-
gating Data Movement Bottlenecks”. en. In: Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages
and Operating Systems - ASPLOS ’18. Williamsburg, VA, USA: ACM Press, 2018,
pp. 316–331. ISBN: 978-1-4503-4911-6. DOI: 10.1145/3173162.3173177.
URL: http://dl.acm.org/citation.cfm?doid=3173162.3173177
(visited on 2019-02-08).

[87] Vasileios Zois et al. “Massively Parallel Skyline Computation for Processing-in-
memory Architectures”. In: Proceedings of the 27th International Conference
on Parallel Architectures and Compilation Techniques. PACT ’18. New York, NY,
USA: ACM, 2018, 1:1–1:12. ISBN: 978-1-4503-5986-3. DOI: 10.1145/3243176.
3243187. URL: http://doi.acm.org/10.1145/3243176.3243187 (vis-
ited on 2019-02-08).

[88] Fabrice Devaux and Jean-François Roy. “Memory circuit with integrated pro-
cessor”. en. US10324870B2. 2019-06. URL: https://patents.google.com/
patent/US10324870B2/en (visited on 2019-10-24).

[89] Mingxuan He et al. “Newton: A DRAM-maker’s Accelerator-in-Memory (AiM)
Architecture for Machine Learning”. In: 2020 53rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). 2020-10, pp. 372–385. DOI:
10.1109/MICRO50266.2020.00040.

[90] Shaahin Angizi and Deliang Fan. “GraphiDe: A Graph Processing Accelerator
leveraging In-DRAM-Computing”. In: Proceedings of the 2019 on Great Lakes
Symposium on VLSI. GLSVLSI ’19. New York, NY, USA: Association for Comput-
ing Machinery, 2019-05, pp. 45–50. ISBN: 978-1-4503-6252-8. DOI: 10.1145/
3299874.3317984. URL: https://doi.org/10.1145/3299874.3317984
(visited on 2022-07-30).

[91] Shuangchen Li et al. “SCOPE: A Stochastic Computing Engine for DRAM-Based
In-Situ Accelerator”. In: 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 2018-10, pp. 696–709. DOI: 10.1109/MICRO.
2018.00062.

[92] UPMEM. 2017. URL: http://www.upmem.com/ (visited on 2017-10-23).

[93] Dominique Lavenier et al. BLAST on UPMEM. Research Report RR-8878. INRIA
Rennes - Bretagne Atlantique, 2016-03, p. 20. URL: https://hal.archives-
ouvertes.fr/hal-01294345 (visited on 2019-02-08).

126

https://doi.org/10.1145/3123939.3124544
http://doi.acm.org/10.1145/3123939.3124544
http://doi.acm.org/10.1145/3123939.3124544
https://doi.org/10.1145/3173162.3173177
http://dl.acm.org/citation.cfm?doid=3173162.3173177
https://doi.org/10.1145/3243176.3243187
https://doi.org/10.1145/3243176.3243187
http://doi.acm.org/10.1145/3243176.3243187
https://patents.google.com/patent/US10324870B2/en
https://patents.google.com/patent/US10324870B2/en
https://doi.org/10.1109/MICRO50266.2020.00040
https://doi.org/10.1145/3299874.3317984
https://doi.org/10.1145/3299874.3317984
https://doi.org/10.1145/3299874.3317984
https://doi.org/10.1109/MICRO.2018.00062
https://doi.org/10.1109/MICRO.2018.00062
http://www.upmem.com/
https://hal.archives-ouvertes.fr/hal-01294345
https://hal.archives-ouvertes.fr/hal-01294345

Bibliography

[94] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. “ComputeDRAM: In-
Memory Compute Using Off-the-Shelf DRAMs”. In: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. MICRO ’52.
New York, NY, USA: Association for Computing Machinery, 2019-10, pp. 100–
113. ISBN: 978-1-4503-6938-1. DOI: 10.1145/3352460.3358260. URL: https:
//doi.org/10.1145/3352460.3358260 (visited on 2022-07-30).

[95] Shanshan Xie et al. “16.2 eDRAM-CIM: Compute-In-Memory Design with
Reconfigurable Embedded-Dynamic-Memory Array Realizing Adaptive Data
Converters and Charge-Domain Computing”. In: 2021 IEEE International Solid-
State Circuits Conference (ISSCC). Vol. 64. 2021-02, pp. 248–250. DOI: 10.1109/
ISSCC42613.2021.9365932.

[96] Samsung. PIM | Technology. en. 2021. URL:https://semiconductor.samsung.
com/content/semiconductor/global/insights/technology/pim.
html (visited on 2022-08-06).

[97] Samsung. Samsung Brings In-Memory Processing Power to Wider Range of Ap-
plications. en. 2021. URL: https://news.samsung.com/global/samsung-
brings-in-memory-processing-power-to-wider-range-of-applications
(visited on 2022-08-06).

[98] Thomas Vogelsang. “Understanding the Energy Consumption of Dynamic
Random Access Memories”. In: 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture. 2010-12, pp. 363–374. DOI: 10.1109/MICRO.
2010.42.

[99] Peng Li, Kevin Gomez, and David J. Lilja. “Exploiting free silicon for energy-
efficient computing directly in NAND flash-based solid-state storage systems”.
In: 2013 IEEE High Performance Extreme Computing Conference (HPEC). 2013-
09, pp. 1–6. DOI: 10.1109/HPEC.2013.6670317.

[100] Panni Wang et al. “Three-Dimensional nand Flash for Vector–Matrix Multipli-
cation”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
27.4 (2019-04), pp. 988–991. ISSN: 1557-9999. DOI: 10.1109/TVLSI.2018.
2882194.

[101] Hang-Ting Lue et al. “Optimal Design Methods to Transform 3D NAND Flash
into a High-Density, High-Bandwidth and Low-Power Nonvolatile Computing
in Memory (nvCIM) Accelerator for Deep-Learning Neural Networks (DNN)”.
In: 2019 IEEE International Electron Devices Meeting (IEDM). 2019-12, pp. 38.1.1–
38.1.4. DOI: 10.1109/IEDM19573.2019.8993652.

[102] Wonbo Shim and Shimeng Yu. “Technological Design of 3D NAND-Based
Compute-in-Memory Architecture for GB-Scale Deep Neural Network”. In:
IEEE Electron Device Letters 42.2 (2021-02), pp. 160–163. ISSN: 1558-0563. DOI:
10.1109/LED.2020.3048101.

127

https://doi.org/10.1145/3352460.3358260
https://doi.org/10.1145/3352460.3358260
https://doi.org/10.1145/3352460.3358260
https://doi.org/10.1109/ISSCC42613.2021.9365932
https://doi.org/10.1109/ISSCC42613.2021.9365932
https://semiconductor.samsung.com/content/semiconductor/global/insights/technology/pim.html
https://semiconductor.samsung.com/content/semiconductor/global/insights/technology/pim.html
https://semiconductor.samsung.com/content/semiconductor/global/insights/technology/pim.html
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://doi.org/10.1109/MICRO.2010.42
https://doi.org/10.1109/MICRO.2010.42
https://doi.org/10.1109/HPEC.2013.6670317
https://doi.org/10.1109/TVLSI.2018.2882194
https://doi.org/10.1109/TVLSI.2018.2882194
https://doi.org/10.1109/IEDM19573.2019.8993652
https://doi.org/10.1109/LED.2020.3048101

Bibliography

[103] Won Ho Choi et al. “An In-Flash Binary Neural Network Accelerator with SLC
NAND Flash Array”. In: 2020 IEEE International Symposium on Circuits and Sys-
tems (ISCAS). 2020-10, pp. 1–5. DOI: 10.1109/ISCAS45731.2020.9180920.

[104] Wen Zhou et al. “Temporal Correlation Detection Based on 3D NAND Flash In-
Memory Computing”. In: IEEE Electron Device Letters 43.6 (2022-06), pp. 874–
877. ISSN: 1558-0563. DOI: 10.1109/LED.2022.3170593.

[105] Minsu Kim et al. “An Embedded nand Flash-Based Compute-In-Memory Array
Demonstrated in a Standard Logic Process”. In: IEEE Journal of Solid-State
Circuits 57.2 (2022-02), pp. 625–638. ISSN: 1558-173X. DOI: 10.1109/JSSC.
2021.3098671.

[106] Samsung. Smart SSD | SSD Card. en. 2020. URL: https://semiconductor.
samsung.com/content/semiconductor/global/ssd/smart- ssd.
html (visited on 2022-08-09).

[107] S. Kvatinsky et al. “Memristor-Based Material Implication (IMPLY) Logic: De-
sign Principles and Methodologies”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 22.10 (2014-10), pp. 2054–2066. ISSN: 1063-8210.
DOI: 10.1109/TVLSI.2013.2282132.

[108] S. Kvatinsky et al. “MAGIC—Memristor-Aided Logic”. In: IEEE Transactions on
Circuits and Systems II: Express Briefs 61.11 (2014-11), pp. 895–899. ISSN: 1549-
7747. DOI: 10.1109/TCSII.2014.2357292. URL: https://ieeexplore.
ieee.org/abstract/document/6895258.

[109] N. Talati et al. “Practical challenges in delivering the promises of real processing-
in-memory machines”. In: 2018 Design, Automation Test in Europe Conference
Exhibition (DATE). 2018-03, pp. 1628–1633. DOI: 10.23919/DATE.2018.
8342275. URL: https://ieeexplore.ieee.org/document/8342275.

[110] A. Haj-Ali et al. “Not in Name Alone: A Memristive Memory Processing Unit
for Real In-Memory Processing”. In: IEEE Micro 38.5 (2018-09), pp. 13–21.
ISSN: 0272-1732. DOI: 10.1109/MM.2018.053631137. URL: https://
ieeexplore.ieee.org/abstract/document/8474943.

[111] A. Haj-Ali et al. “Efficient Algorithms for In-Memory Fixed Point Multiplication
Using MAGIC”. In: 2018 IEEE International Symposium on Circuits and Systems
(ISCAS). 2018-05, pp. 1–5. DOI: 10.1109/ISCAS.2018.8351561. URL: https:
//ieeexplore.ieee.org/document/8351561.

[112] R. Ben Hur et al. “Simple magic: Synthesis and in-memory Mapping of logic
execution for memristor-aided logic”. In: 2017 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD). 2017-11, pp. 225–232. DOI: 10.
1109/ICCAD.2017.8203782. URL: https://ieeexplore.ieee.org/
document/8203782.

[113] P. Gaillardon et al. “The Programmable Logic-in-Memory (PLiM) computer”. In:
2016 Design, Automation Test in Europe Conference Exhibition (DATE). 2016-03,
pp. 427–432. URL: https://ieeexplore.ieee.org/document/7459349.

128

https://doi.org/10.1109/ISCAS45731.2020.9180920
https://doi.org/10.1109/LED.2022.3170593
https://doi.org/10.1109/JSSC.2021.3098671
https://doi.org/10.1109/JSSC.2021.3098671
https://semiconductor.samsung.com/content/semiconductor/global/ssd/smart-ssd.html
https://semiconductor.samsung.com/content/semiconductor/global/ssd/smart-ssd.html
https://semiconductor.samsung.com/content/semiconductor/global/ssd/smart-ssd.html
https://doi.org/10.1109/TVLSI.2013.2282132
https://doi.org/10.1109/TCSII.2014.2357292
https://ieeexplore.ieee.org/abstract/document/6895258
https://ieeexplore.ieee.org/abstract/document/6895258
https://doi.org/10.23919/DATE.2018.8342275
https://doi.org/10.23919/DATE.2018.8342275
https://ieeexplore.ieee.org/document/8342275
https://doi.org/10.1109/MM.2018.053631137
https://ieeexplore.ieee.org/abstract/document/8474943
https://ieeexplore.ieee.org/abstract/document/8474943
https://doi.org/10.1109/ISCAS.2018.8351561
https://ieeexplore.ieee.org/document/8351561
https://ieeexplore.ieee.org/document/8351561
https://doi.org/10.1109/ICCAD.2017.8203782
https://doi.org/10.1109/ICCAD.2017.8203782
https://ieeexplore.ieee.org/document/8203782
https://ieeexplore.ieee.org/document/8203782
https://ieeexplore.ieee.org/document/7459349

Bibliography

[114] M. Abu Lebdeh et al. “An Efficient Heterogeneous Memristive xnor for In-
Memory Computing”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 64.9 (2017-09), pp. 2427–2437. ISSN: 1549-8328. DOI: 10.1109/TCSI.
2017.2706299.

[115] João Vieira et al. “A Product Engine for Energy-Efficient Execution of Binary
Neural Networks Using Resistive Memories”. In: 2019 IFIP/IEEE 27th Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC). 2019-10, pp. 160–
165. DOI: 10.1109/VLSI-SoC.2019.8920343.

[116] Tianqi Tang et al. “Binary convolutional neural network on RRAM”. In: 2017
22nd Asia and South Pacific Design Automation Conference (ASP-DAC). 2017-
01, pp. 782–787. DOI: 10.1109/ASPDAC.2017.7858419.

[117] Mahdi Nazm Bojnordi and Engin Ipek. “Memristive Boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learning”. In:
2016 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA). 2016-03, pp. 1–13. DOI: 10.1109/HPCA.2016.7446049.

[118] Jaesung Park et al. “TiOx-Based RRAM Synapse With 64-Levels of Conductance
and Symmetric Conductance Change by Adopting a Hybrid Pulse Scheme for
Neuromorphic Computing”. In: IEEE Electron Device Letters 37.12 (2016-12),
pp. 1559–1562. ISSN: 1558-0563. DOI: 10.1109/LED.2016.2622716.

[119] F. Su et al. “A 462GOPs/J RRAM-based nonvolatile intelligent processor for
energy harvesting IoE system featuring nonvolatile logics and processing-in-
memory”. In: 2017 Symposium on VLSI Circuits. 2017-06, pp. C260–C261. DOI:
10.23919/VLSIC.2017.8008585.

[120] W. Chen et al. “A 16Mb dual-mode ReRAM macro with sub-14ns computing-in-
memory and memory functions enabled by self-write termination scheme”. In:
2017 IEEE International Electron Devices Meeting (IEDM). 2017-12, pp. 28.2.1–
28.2.4. DOI: 10.1109/IEDM.2017.8268468.

[121] W. Chen et al. “A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro
with sub-16ns multiply-and-accumulate for binary DNN AI edge processors”.
In: 2018 IEEE International Solid - State Circuits Conference - (ISSCC). 2018-02,
pp. 494–496. DOI: 10.1109/ISSCC.2018.8310400.

[122] Qi Liu et al. “33.2 A Fully Integrated Analog ReRAM Based 78.4TOPS/W Compute-
In-Memory Chip with Fully Parallel MAC Computing”. In: 2020 IEEE Interna-
tional Solid- State Circuits Conference - (ISSCC). 2020-02, pp. 500–502. DOI:
10.1109/ISSCC19947.2020.9062953.

[123] Zhuo-Rui Wang et al. “Efficient Implementation of Boolean and Full-Adder
Functions With 1T1R RRAMs for Beyond Von Neumann In-Memory Comput-
ing”. In: IEEE Transactions on Electron Devices 65.10 (2018-10), pp. 4659–4666.
ISSN: 1557-9646. DOI: 10.1109/TED.2018.2866048.

[124] A Sebastian et al. “Computational memory-based inference and training of
deep neural networks”. en. In: VLSI Technology (2019), p. 2.

129

https://doi.org/10.1109/TCSI.2017.2706299
https://doi.org/10.1109/TCSI.2017.2706299
https://doi.org/10.1109/VLSI-SoC.2019.8920343
https://doi.org/10.1109/ASPDAC.2017.7858419
https://doi.org/10.1109/HPCA.2016.7446049
https://doi.org/10.1109/LED.2016.2622716
https://doi.org/10.23919/VLSIC.2017.8008585
https://doi.org/10.1109/IEDM.2017.8268468
https://doi.org/10.1109/ISSCC.2018.8310400
https://doi.org/10.1109/ISSCC19947.2020.9062953
https://doi.org/10.1109/TED.2018.2866048

Bibliography

[125] Jing Li et al. “1 Mb 0.41 µm² 2T-2R Cell Nonvolatile TCAM With Two-Bit En-
coding and Clocked Self-Referenced Sensing”. en. In: IEEE Journal of Solid-
State Circuits 49.4 (2014-04), pp. 896–907. ISSN: 0018-9200, 1558-173X. DOI:
10.1109/JSSC.2013.2292055. URL: http://ieeexplore.ieee.org/
document/6680770/ (visited on 2020-09-07).

[126] P. Narayanan et al. “Fully On-Chip MAC at 14 nm Enabled by Accurate Row-
Wise Programming of PCM-Based Weights and Parallel Vector-Transport in
Duration-Format”. In: IEEE Transactions on Electron Devices 68.12 (2021-12),
pp. 6629–6636. ISSN: 1557-9646. DOI: 10.1109/TED.2021.3115993.

[127] Riduan Khaddam-Aljameh et al. “HERMES-Core—A 1.59-TOPS/mm2 PCM on
14-nm CMOS In-Memory Compute Core Using 300-ps/LSB Linearized CCO-
Based ADCs”. In: IEEE Journal of Solid-State Circuits 57.4 (2022-04), pp. 1027–
1038. ISSN: 1558-173X. DOI: 10.1109/JSSC.2022.3140414.

[128] Wang Kang et al. “In-Memory Processing Paradigm for Bitwise Logic Oper-
ations in STT–MRAM”. In: IEEE Transactions on Magnetics 53.11 (2017-11),
pp. 1–4. ISSN: 1941-0069. DOI: 10.1109/TMAG.2017.2703863.

[129] Shubham Jain et al. “Computing in Memory With Spin-Transfer Torque Mag-
netic RAM”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
26.3 (2018-03), pp. 470–483. ISSN: 1557-9999. DOI: 10.1109/TVLSI.2017.
2776954.

[130] Masoud Zabihi et al. “In-Memory Processing on the Spintronic CRAM: From
Hardware Design to Application Mapping”. In: IEEE Transactions on Computers
68.8 (2019-08), pp. 1159–1173. ISSN: 1557-9956. DOI: 10.1109/TC.2018.
2858251.

[131] Tifenn Hirtzlin et al. “Stochastic Computing for Hardware Implementation of
Binarized Neural Networks”. In: IEEE Access 7 (2019), pp. 76394–76403. ISSN:
2169-3536. DOI: 10.1109/ACCESS.2019.2921104.

[132] Tung-Cheng Chang et al. “13.4 A 22nm 1Mb 1024b-Read and Near-Memory-
Computing Dual-Mode STT-MRAM Macro with 42.6GB/s Read Bandwidth for
Security-Aware Mobile Devices”. In: 2020 IEEE International Solid- State Cir-
cuits Conference - (ISSCC). 2020-02, pp. 224–226. DOI: 10.1109/ISSCC19947.
2020.9063072.

[133] Peter Deaville et al. “A Maximally Row-Parallel MRAM In-Memory-Computing
Macro Addressing Readout Circuit Sensitivity and Area”. In: ESSCIRC 2021 -
IEEE 47th European Solid State Circuits Conference (ESSCIRC). 2021-09, pp. 75–
78. DOI: 10.1109/ESSCIRC53450.2021.9567807.

[134] Shuangchen Li et al. “Pinatubo: A Processing-in-memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories”. In: Proceedings of
the 53rd Annual Design Automation Conference. DAC ’16. New York, NY, USA:
ACM, 2016, 173:1–173:6. ISBN: 978-1-4503-4236-0. DOI: 10.1145/2897937.

130

https://doi.org/10.1109/JSSC.2013.2292055
http://ieeexplore.ieee.org/document/6680770/
http://ieeexplore.ieee.org/document/6680770/
https://doi.org/10.1109/TED.2021.3115993
https://doi.org/10.1109/JSSC.2022.3140414
https://doi.org/10.1109/TMAG.2017.2703863
https://doi.org/10.1109/TVLSI.2017.2776954
https://doi.org/10.1109/TVLSI.2017.2776954
https://doi.org/10.1109/TC.2018.2858251
https://doi.org/10.1109/TC.2018.2858251
https://doi.org/10.1109/ACCESS.2019.2921104
https://doi.org/10.1109/ISSCC19947.2020.9063072
https://doi.org/10.1109/ISSCC19947.2020.9063072
https://doi.org/10.1109/ESSCIRC53450.2021.9567807
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1145/2897937.2898064

Bibliography

2898064. URL: http://doi.acm.org/10.1145/2897937.2898064 (vis-
ited on 2019-02-08).

[135] M. Imani, S. Gupta, and T. Rosing. “GenPIM: Generalized processing in-memory
to accelerate data intensive applications”. In: 2018 Design, Automation Test in
Europe Conference Exhibition (DATE). 2018-03, pp. 1155–1158. DOI: 10.23919/
DATE.2018.8342186. URL: https://ieeexplore.ieee.org/document/
8342186.

[136] Shun Okamoto et al. “Application Driven SCM and NAND Flash Hybrid SSD De-
sign for Data-Centric Computing System”. In: 2015 IEEE International Memory
Workshop (IMW). 2015-05, pp. 1–4. DOI: 10.1109/IMW.2015.7150277.

[137] Ken Takeuchi. “Data-aware NAND flash memory for intelligent computing with
deep neural network”. In: 2017 IEEE International Electron Devices Meeting
(IEDM). 2017-12, pp. 28.4.1–28.4.4. DOI: 10.1109/IEDM.2017.8268470.

[138] Linbin Chen et al. “CCE: A Combined SRAM and Non Volatile Cache for En-
durance of Next Generation Multilevel Non Volatile Memories in Embedded
Systems”. In: Proceedings of the 14th IEEE/ACM International Symposium on
Nanoscale Architectures. NANOARCH ’18. New York, NY, USA: ACM, 2018,
pp. 58–64. ISBN: 978-1-4503-5815-6. DOI: 10.1145/3232195.3232196. URL:
http://doi.acm.org/10.1145/3232195.3232196 (visited on 2019-01-
07).

[139] Xueyong Zhang, Vivek Mohan, and Arindam Basu. “CRAM: Collocated SRAM
and DRAM With In-Memory Computing-Based Denoising and Filling for Neu-
romorphic Vision Sensors in 65 nm CMOS”. In: IEEE Transactions on Circuits
and Systems II: Express Briefs 67.5 (2020-05), pp. 816–820. ISSN: 1558-3791. DOI:
10.1109/TCSII.2020.2980125.

[140] Marco Rios et al. “Running Efficiently CNNs on the Edge Thanks to Hybrid
SRAM-RRAM In-Memory Computing”. In: 2021 Design, Automation & Test
in Europe Conference & Exhibition (DATE). 2021-02, pp. 1881–1886. DOI: 10.
23919/DATE51398.2021.9474233.

[141] Hwajung Kim, Heon Y. Yeom, and Hanul Sung. “Understanding the Perfor-
mance Characteristics of Computational Storage Drives: A Case Study with
SmartSSD”. en. In: Electronics 10.21 (2021-10), p. 2617. ISSN: 2079-9292. DOI:
10.3390/electronics10212617. URL: https://www.mdpi.com/2079-
9292/10/21/2617 (visited on 2022-08-06).

[142] Di Gao et al. “Eva-CiM: A System-Level Performance and Energy Evaluation
Framework for Computing-in-Memory Architectures”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2020), pp. 1–1.
ISSN: 1937-4151. DOI: 10.1109/TCAD.2020.2966484.

131

https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1145/2897937.2898064
http://doi.acm.org/10.1145/2897937.2898064
https://doi.org/10.23919/DATE.2018.8342186
https://doi.org/10.23919/DATE.2018.8342186
https://ieeexplore.ieee.org/document/8342186
https://ieeexplore.ieee.org/document/8342186
https://doi.org/10.1109/IMW.2015.7150277
https://doi.org/10.1109/IEDM.2017.8268470
https://doi.org/10.1145/3232195.3232196
http://doi.acm.org/10.1145/3232195.3232196
https://doi.org/10.1109/TCSII.2020.2980125
https://doi.org/10.23919/DATE51398.2021.9474233
https://doi.org/10.23919/DATE51398.2021.9474233
https://doi.org/10.3390/electronics10212617
https://www.mdpi.com/2079-9292/10/21/2617
https://www.mdpi.com/2079-9292/10/21/2617
https://doi.org/10.1109/TCAD.2020.2966484

Bibliography

[143] R. Gauchi et al. “Reconfigurable tiles of computing-in-memory SRAM archi-
tecture for scalable vectorization”. In: Proceedings of the ACM/IEEE Interna-
tional Symposium on Low Power Electronics and Design. ISLPED ’20. New
York, NY, USA: Association for Computing Machinery, 2020-08, pp. 121–126.
ISBN: 978-1-4503-7053-0. DOI: 10.1145/3370748.3406550. URL: https:
//doi.org/10.1145/3370748.3406550 (visited on 2020-09-11).

[144] Junwhan Ahn et al. “PIM-enabled instructions: A low-overhead, locality-aware
processing-in-memory architecture”. In: 2015 ACM/IEEE 42nd Annual Interna-
tional Symposium on Computer Architecture (ISCA). 2015-06, pp. 336–348. DOI:
10.1145/2749469.2750385.

[145] Maciej Besta et al. “SISA: Set-Centric Instruction Set Architecture for Graph
Mining on Processing-in-Memory Systems”. In: arXiv:2104.07582 [cs] (2021-04).
URL: http://arxiv.org/abs/2104.07582 (visited on 2021-04-26).

[146] J. v Lunteren et al. “Coherently Attached Programmable Near-Memory Accel-
eration Platform and its application to Stencil Processing”. In: 2019 Design,
Automation Test in Europe Conference Exhibition (DATE). 2019-03, pp. 668–673.
DOI: 10.23919/DATE.2019.8715088.

[147] Liang Chang et al. “DASM: Data-Streaming-Based Computing in Nonvolatile
Memory Architecture for Embedded System”. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 27.9 (2019-09), pp. 2046–2059. ISSN:
1557-9999. DOI: 10.1109/TVLSI.2019.2912941.

[148] N. Verma et al. “In-Memory Computing: Advances and Prospects”. In: IEEE
Solid-State Circuits Magazine 11.3 (2019), pp. 43–55. ISSN: 1943-0590. DOI:
10.1109/MSSC.2019.2922889.

[149] Chuan-Jia Jhang et al. “Challenges and Trends of SRAM-Based Computing-In-
Memory for AI Edge Devices”. In: IEEE Transactions on Circuits and Systems I:
Regular Papers 68.5 (2021-05), pp. 1773–1786. ISSN: 1558-0806. DOI: 10.1109/
TCSI.2021.3064189.

[150] Abu Sebastian et al. “Memory devices and applications for in-memory com-
puting”. en. In: Nature Nanotechnology 15.7 (2020-07), pp. 529–544. ISSN: 1748-
3395. DOI: 10.1038/s41565-020-0655-z. URL: https://www.nature.
com/articles/s41565-020-0655-z (visited on 2022-08-10).

[151] M. Aamir, Somya Sharma, and Anuj Grover. “ChaCha20-in-Memory for Side-
Channel Resistance in IoT Edge-Node Devices”. In: IEEE Open Journal of Cir-
cuits and Systems 2 (2021), pp. 833–842. ISSN: 2644-1225. DOI: 10.1109/OJCAS.
2021.3127273.

[152] I. Giannopoulos et al. “8-bit Precision In-Memory Multiplication with Projected
Phase-Change Memory”. In: 2018 IEEE International Electron Devices Meeting
(IEDM). 2018-12, pp. 27.7.1–27.7.4. DOI: 10.1109/IEDM.2018.8614558.

132

https://doi.org/10.1145/3370748.3406550
https://doi.org/10.1145/3370748.3406550
https://doi.org/10.1145/3370748.3406550
https://doi.org/10.1145/2749469.2750385
http://arxiv.org/abs/2104.07582
https://doi.org/10.23919/DATE.2019.8715088
https://doi.org/10.1109/TVLSI.2019.2912941
https://doi.org/10.1109/MSSC.2019.2922889
https://doi.org/10.1109/TCSI.2021.3064189
https://doi.org/10.1109/TCSI.2021.3064189
https://doi.org/10.1038/s41565-020-0655-z
https://www.nature.com/articles/s41565-020-0655-z
https://www.nature.com/articles/s41565-020-0655-z
https://doi.org/10.1109/OJCAS.2021.3127273
https://doi.org/10.1109/OJCAS.2021.3127273
https://doi.org/10.1109/IEDM.2018.8614558

Bibliography

[153] T. B. Preußer et al. “Inference of quantized neural networks on heterogeneous
all-programmable devices”. In: 2018 Design, Automation Test in Europe Con-
ference Exhibition (DATE). 2018-03, pp. 833–838. DOI: 10.23919/DATE.2018.
8342121. URL: http://ieeexplore.ieee.org/document/8342121/.

[154] M. Kooli et al. “Smart instruction codes for in-memory computing architec-
tures compatible with standard SRAM interfaces”. In: 2018 Design, Automation
Test in Europe Conference Exhibition (DATE). 2018-03, pp. 1634–1639. DOI:
10.23919/DATE.2018.8342276. URL: http://ieeexplore.ieee.org/
document/8342276/.

[155] Henry S. Warren. Hacker’s delight. en. 2nd ed. Upper Saddle River, NJ: Addison-
Wesley, 2013. ISBN: 978-0-321-84268-8.

[156] Andrew Waterman, Krste Asanovic, and CS Division. “RISC-V Unprivileged ISA
specification”. en. In: 1 (2019), p. 238.

[157] Hossein Valavi et al. “A Mixed-Signal Binarized Convolutional-Neural-Network
Accelerator Integrating Dense Weight Storage and Multiplication for Reduced
Data Movement”. In: 2018 IEEE Symposium on VLSI Circuits. 2018 IEEE Sym-
posium on VLSI Circuits. 2018-06, pp. 141–142. DOI: 10.1109/VLSIC.2018.
8502421.

[158] Louis-Noel Pouchet and Tomofumi Yuki. PolyBench/C – The polyhedral bench-
mark suite. 2015. URL: https://web.cse.ohio-state.edu/~pouchet.2/
software/polybench/ (visited on 2022-08-23).

[159] Joseph Redmon. Darknet: Open Source Neural Networks in C.http://pjreddie.
com/darknet/. 2013. URL: https://pjreddie.com/darknet/ (visited on
2022-08-23).

[160] Bruce Fleischer and Sunil Shukla. Approximate Computing for On-Chip AI
Acceleration: IBM Research at VLSI. en-US. 2018-06. URL: https://www.
ibm.com/blogs/research/2018/06/approximate-computing-ai-
acceleration/ (visited on 2022-08-31).

[161] Wikipedia. Bitap algorithm. en. Page Version ID: 1063296095. 2022-01. URL:
https://en.wikipedia.org/w/index.php?title=Bitap_algorithm&
oldid=1063296095 (visited on 2022-08-31).

[162] BLAS (Basic Linear Algebra Subprograms). 2021. URL: https://netlib.org/
blas/ (visited on 2022-08-23).

[163] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition. 2009-06, pp. 248–
255. DOI: 10.1109/CVPR.2009.5206848.

[164] Wikichip. Skylake (client) - Microarchitectures - Intel - WikiChip. en. 2015.
URL: https://en.wikichip.org/wiki/intel/microarchitectures/
skylake_(client) (visited on 2022-09-01).

133

https://doi.org/10.23919/DATE.2018.8342121
https://doi.org/10.23919/DATE.2018.8342121
http://ieeexplore.ieee.org/document/8342121/
https://doi.org/10.23919/DATE.2018.8342276
http://ieeexplore.ieee.org/document/8342276/
http://ieeexplore.ieee.org/document/8342276/
https://doi.org/10.1109/VLSIC.2018.8502421
https://doi.org/10.1109/VLSIC.2018.8502421
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://www.ibm.com/blogs/research/2018/06/approximate-computing-ai-acceleration/
https://www.ibm.com/blogs/research/2018/06/approximate-computing-ai-acceleration/
https://www.ibm.com/blogs/research/2018/06/approximate-computing-ai-acceleration/
https://en.wikipedia.org/w/index.php?title=Bitap_algorithm&oldid=1063296095
https://en.wikipedia.org/w/index.php?title=Bitap_algorithm&oldid=1063296095
https://netlib.org/blas/
https://netlib.org/blas/
https://doi.org/10.1109/CVPR.2009.5206848
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

Bibliography

[165] Linux Kernel Developers. Perf Wiki. 2022. URL: https://perf.wiki.kernel.
org/index.php/Main_Page (visited on 2022-08-24).

[166] Performance Application Programming Interface. 2022. URL: https://icl.
utk.edu/papi/software/ (visited on 2022-08-24).

[167] Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B:
System Programming Guide, Part 2. Developer’s manual Volume 3B, Part 2,
p. 582. (Visited on 2021-07-05).

[168] John McCalpin. John McCalpin’s blog “ Blog Archive ” Notes on the mystery of
hardware cache performance counters. URL: https://sites.utexas.edu/
jdm4372/2013/07/14/notes-on-the-mystery-of-hardware-cache-
performance-counters/ (visited on 2021-07-05).

[169] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic Translator”. en. In:
(2005), p. 6.

[170] Nathan Binkert et al. “The gem5 simulator”. en. In: ACM SIGARCH Computer
Architecture News 39.2 (2011-05), pp. 1–7. ISSN: 0163-5964. DOI: 10.1145/
2024716.2024718. URL: https://dl.acm.org/doi/10.1145/2024716.
2024718 (visited on 2022-05-02).

[171] Anastasiia Butko et al. “Accuracy evaluation of GEM5 simulator system”. In:
7th International Workshop on Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC). 7th International Workshop on Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC). 2012-07, pp. 1–7.
DOI: 10.1109/ReCoSoC.2012.6322869.

[172] Daniel Sanchez and Christos Kozyrakis. “ZSim: fast and accurate microarchi-
tectural simulation of thousand-core systems”. en. In: Proceedings of the 40th
Annual International Symposium on Computer Architecture. Tel-Aviv Israel:
ACM, 2013-06, pp. 475–486. ISBN: 978-1-4503-2079-5. DOI: 10.1145/2485922.
2485963. URL: https://dl.acm.org/doi/10.1145/2485922.2485963
(visited on 2022-05-02).

[173] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. “Sniper: exploring the
level of abstraction for scalable and accurate parallel multi-core simulation”.
en. In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis on - SC ’11. Seattle, Washington:
ACM Press, 2011, p. 1. ISBN: 978-1-4503-0771-0. DOI: 10.1145/2063384.
2063454. URL: http://dl.acm.org/citation.cfm?doid=2063384.
2063454 (visited on 2022-05-02).

[174] C. Lattner and V. Adve. “LLVM: A compilation framework for lifelong program
analysis & transformation”. en. In: International Symposium on Code Gen-
eration and Optimization, 2004. CGO 2004. San Jose, CA, USA: IEEE, 2004,
pp. 75–86. ISBN: 978-0-7695-2102-2. DOI: 10.1109/CGO.2004.1281665.
URL: http://ieeexplore.ieee.org/document/1281665/ (visited on
2022-05-02).

134

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://icl.utk.edu/papi/software/
https://icl.utk.edu/papi/software/
https://sites.utexas.edu/jdm4372/2013/07/14/notes-on-the-mystery-of-hardware-cache-performance-counters/
https://sites.utexas.edu/jdm4372/2013/07/14/notes-on-the-mystery-of-hardware-cache-performance-counters/
https://sites.utexas.edu/jdm4372/2013/07/14/notes-on-the-mystery-of-hardware-cache-performance-counters/
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://dl.acm.org/doi/10.1145/2024716.2024718
https://dl.acm.org/doi/10.1145/2024716.2024718
https://doi.org/10.1109/ReCoSoC.2012.6322869
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/2485922.2485963
https://dl.acm.org/doi/10.1145/2485922.2485963
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/2063384.2063454
http://dl.acm.org/citation.cfm?doid=2063384.2063454
http://dl.acm.org/citation.cfm?doid=2063384.2063454
https://doi.org/10.1109/CGO.2004.1281665
http://ieeexplore.ieee.org/document/1281665/

Bibliography

[175] M. Kooli et al. “Software Platform Dedicated for In-Memory Computing Cir-
cuit Evaluation”. In: 2017 International Symposium on Rapid System Proto-
typing (RSP). 2017-10, pp. 43–49. URL: https://ieeexplore.ieee.org/
document/8547806.

[176] Chi-Keung Luk et al. “Pin: building customized program analysis tools with
dynamic instrumentation”. In: ACM SIGPLAN Notices 40.6 (2005-06), pp. 190–
200. ISSN: 0362-1340. DOI: 10.1145/1064978.1065034. URL: https://doi.
org/10.1145/1064978.1065034 (visited on 2020-03-10).

[177] Intel. Pin – A Dynamic Binary Instrumentation Tool. URL: https://www.
intel.com/content/www/us/en/developer/articles/tool/pin-a-
dynamic-binary-instrumentation-tool.html (visited on 2022-04-25).

[178] Xiangyu Dong et al. “NVSim: A Circuit-Level Performance, Energy, and Area
Model for Emerging Nonvolatile Memory”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 31.7 (2012-07), pp. 994–1007.
ISSN: 1937-4151. DOI: 10.1109/TCAD.2012.2185930.

[179] S.J.E. Wilton and N.P. Jouppi. “CACTI: an enhanced cache access and cycle
time model”. In: IEEE Journal of Solid-State Circuits 31.5 (1996-05), pp. 677–688.
ISSN: 1558-173X. DOI: 10.1109/4.509850.

[180] ITRS. ITRS Models and Papers. 2015. URL: http://www.itrs2.net/itrs-
models-and-papers.html (visited on 2022-09-03).

[181] Youngdon Choi et al. “A 20nm 1.8V 8Gb PRAM with 40MB/s program band-
width”. In: 2012 IEEE International Solid-State Circuits Conference. 2012-02,
pp. 46–48. DOI: 10.1109/ISSCC.2012.6176872.

[182] R. Gauchi et al. “Memory Sizing of a Scalable SRAM In-Memory Computing Tile
Based Architecture”. In: 2019 IFIP/IEEE 27th International Conference on Very
Large Scale Integration (VLSI-SoC). 2019-10, pp. 166–171. DOI: 10.1109/VLSI-
SoC.2019.8920373.

[183] Jinsong Ji, Chao Wang, and Xuehai Zhou. “System-Level Early Power Estimation
for Memory Subsystem in Embedded Systems”. In: 2008-11-08, pp. 370–375.
DOI: 10.1109/SEC.2008.48.

[184] Yoongu Kim, Weikun Yang, and Onur Mutlu. “Ramulator: A Fast and Extensi-
ble DRAM Simulator”. In: IEEE Computer Architecture Letters 15.1 (2016-01),
pp. 45–49. ISSN: 1556-6064. DOI: 10.1109/LCA.2015.2414456.

[185] Ramulator: A DRAM Simulator. 2022-03-01. URL: https://github.com/
CMU-SAFARI/ramulator (visited on 2022-03-04).

[186] VAMPIRE. 2022-02-11. URL: https://github.com/CMU-SAFARI/VAMPIRE
(visited on 2022-03-04).

135

https://ieeexplore.ieee.org/document/8547806
https://ieeexplore.ieee.org/document/8547806
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/4.509850
http://www.itrs2.net/itrs-models-and-papers.html
http://www.itrs2.net/itrs-models-and-papers.html
https://doi.org/10.1109/ISSCC.2012.6176872
https://doi.org/10.1109/VLSI-SoC.2019.8920373
https://doi.org/10.1109/VLSI-SoC.2019.8920373
https://doi.org/10.1109/SEC.2008.48
https://doi.org/10.1109/LCA.2015.2414456
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/VAMPIRE

Bibliography

[187] Saugata Ghose et al. “What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study”. en. In: Proceedings of the ACM
on Measurement and Analysis of Computing Systems 2.3 (2018-12), pp. 1–41.
ISSN: 2476-1249, 2476-1249. DOI: 10.1145/3224419. URL: https://dl.acm.
org/doi/10.1145/3224419 (visited on 2020-09-08).

[188] Karthik Chandrasekar et al. DRAMPower. URL: http://www.drampower.
info (visited on 2022-03-04).

[189] DRAM Power Model (DRAMPower). 2022-02-11. URL: https://github.com/
tukl-msd/DRAMPower (visited on 2022-03-04).

[190] Matt Poremba and Yuan Xie. “NVMain: An Architectural-Level Main Mem-
ory Simulator for Emerging Non-volatile Memories”. In: 2012 IEEE Computer
Society Annual Symposium on VLSI. 2012 IEEE Computer Society Annual Sym-
posium on VLSI. 2012-08, pp. 392–397. DOI: 10.1109/ISVLSI.2012.82.

[191] Matthew Poremba, Tao Zhang, and Yuan Xie. “NVMain 2.0: A User-Friendly
Memory Simulator to Model (Non-)Volatile Memory Systems”. In: IEEE Com-
puter Architecture Letters 14.2 (2015-07), pp. 140–143. ISSN: 1556-6064. DOI:
10.1109/LCA.2015.2402435.

[192] umd-memsys/DRAMSim2. 2022-03-04. URL: https://github.com/umd-
memsys/DRAMSim2 (visited on 2022-03-04).

[193] Matthias Jung, Christian Weis, and Norbert Wehn. “DRAMSys: A Flexible DRAM
Subsystem Design Space Exploration Framework”. In: IPSJ Transactions on
System LSI Design Methodology 8 (2015), pp. 63–74. DOI: 10.2197/ipsjtsldm.
8.63.

[194] DRAMSys - Fraunhofer IESE. Fraunhofer Institute for Experimental Software En-
gineering IESE. URL:https://www.iese.fraunhofer.de/en/innovation_

trends/autonomous-systems/memtonomy/DRAMSys.html (visited on
2022-03-12).

[195] tukl-msd/DRAMSys. 2022-03-08. URL: https://github.com/tukl-msd/
DRAMSys (visited on 2022-03-12).

[196] SEAL-UCSB/NVmain. 2022-01-31. URL: https://github.com/SEAL-UCSB/
NVmain (visited on 2022-03-04).

[197] Valentin Egloff et al. “Storage Class Memory with Computing Row Buffer: A
Design Space Exploration”. In: 2021 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). 2021-02, pp. 1–6. DOI: 10.23919/DATE51398.
2021.9473992.

[198] P Rosenfeld, E Cooper-Balis, and B Jacob. “DRAMSim2: A Cycle Accurate Mem-
ory System Simulator”. In: IEEE Computer Architecture Letters 10.1 (2011-01),
pp. 16–19. ISSN: 1556-6056. DOI: 10.1109/L-CA.2011.4. URL: http://
ieeexplore.ieee.org/document/5732229/ (visited on 2022-03-04).

136

https://doi.org/10.1145/3224419
https://dl.acm.org/doi/10.1145/3224419
https://dl.acm.org/doi/10.1145/3224419
http://www.drampower.info
http://www.drampower.info
https://github.com/tukl-msd/DRAMPower
https://github.com/tukl-msd/DRAMPower
https://doi.org/10.1109/ISVLSI.2012.82
https://doi.org/10.1109/LCA.2015.2402435
https://github.com/umd-memsys/DRAMSim2
https://github.com/umd-memsys/DRAMSim2
https://doi.org/10.2197/ipsjtsldm.8.63
https://doi.org/10.2197/ipsjtsldm.8.63
https://www.iese.fraunhofer.de/en/innovation_trends/autonomous-systems/memtonomy/DRAMSys.html
https://www.iese.fraunhofer.de/en/innovation_trends/autonomous-systems/memtonomy/DRAMSys.html
https://github.com/tukl-msd/DRAMSys
https://github.com/tukl-msd/DRAMSys
https://github.com/SEAL-UCSB/NVmain
https://github.com/SEAL-UCSB/NVmain
https://doi.org/10.23919/DATE51398.2021.9473992
https://doi.org/10.23919/DATE51398.2021.9473992
https://doi.org/10.1109/L-CA.2011.4
http://ieeexplore.ieee.org/document/5732229/
http://ieeexplore.ieee.org/document/5732229/

Bibliography

[199] Lukas Steiner et al. “DRAMSys4.0: A Fast and Cycle-Accurate SystemC/TLM-
Based DRAM Simulator”. In: Embedded Computer Systems: Architectures, Mod-
eling, and Simulation. Ed. by Alex Orailoglu, Matthias Jung, and Marc Re-
ichenbach. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2020, pp. 110–126. ISBN: 978-3-030-60939-9. DOI: 10.1007/978-
3-030-60939-9_8.

137

https://doi.org/10.1007/978-3-030-60939-9_8
https://doi.org/10.1007/978-3-030-60939-9_8

Appendices

Contents

138

	Title page
	Affidavit
	List of publications and conference participation
	Résumé
	Abstract
	Remerciements
	Contents
	List of Figures
	List of Tables
	List of acronyms
	Glossary
	1 Introduction & Contextualisation
	1.1 The end of technology advancement
	1.1.1 Physical limits
	1.1.2 Architecture improvements
	1.1.3 Socioeconomic impacts

	1.2 Memory technologies
	1.2.1 Main memory technologies
	1.2.2 Emerging non volatile memories

	1.3 A new computing paradigm
	1.3.1 Big Data
	1.3.2 Proposed solution : memory computing

	1.4 Conclusion

	Bibliography
	Appendices

