

AN ADVANCED DESIGN GUIDE
Written by Pipou.

The making of Troubled, a map by Nehr and Pipou.

A complete and detailed guide about our incredible (and long) journey.

Page 2 sur 17

Page 3 sur 17

Preamble

This guide has for objective to cover all the advanced design techniques and strategies I had to use during
the making of Troubled, a map by Nehr and me.

What would designing be without some math?

I’ll skim through the basics of designing and focus on the math part mostly.

I tried my best to make it the most explicit and understandable for you to follow my steps and live the
experience through me, through my words, and maybe that could help you discover some design tricks
you could need now or later.

Don’t hesitate to contact me if you have any question.

Have a good read!

Page 4 sur 17

CHAPTER I

HOW TO SCALE & ALIGN TWO LAYERS IN GROUPS OF
DIFFERENT PARALLAXES

Idea:

I want to add a cloud effect to my map. The cloud effect should be over the playground, over the player.

Why would I do that?

You aim to enhance the immersive experience. While background effects are prevalent, foreground
effects are less common due to their higher complexity and the need for meticulous design. However,
foreground effects enrich maps by enveloping the player in both background and foreground elements
simultaneously, crafting atmosphere and mood. Conversely, the absence of foreground effects may
result in a simpler appearance, focusing primarily on gameplay or presenting a cross-sectional plan.

Steps: To do that I have to…

I) Choose the right parallax settings. ... 5

II) Scale the layer.. 6

III) Align the groups. ... 7

a) Aligning groups with different parallax settings, but with same layer size. 7

b) Aligning groups with different parallax settings, with different layer size. 10

c) Groups alignment final equation. ... 12

d) Sheet. .. 12

IV) Application to Troubled. .. 13

Appendixes. ... 15

Page 5 sur 17

I) Choose the right parallax settings.

Summary

The clouds must move slightly faster than the players. To do that, our clouds must have a parallax setting
>100 for both X and Y.

Since the clouds have a different parallax from the original playground design group, and for better
visibility, we must create another group dedicated to the clouds.

Now, “group#1” is our playground group, with a parallax of Para X=Para Y=100 and “group#2” is our cloud
group, with a parallax of Para X=Para Y=120.

Explanations

Parallax 0 (short for parallax X=Y=0) sticks a group (a layer or a quad) to the tee, giving the impression of
having a background image, an image that doesn’t move (but it moves with the tee at the same speed).

Parallax 100 pins down a group to the playground (so it’s anchored to entities and matches the visuals
and the physics).

That way, having a parallax between 0-100 creates depth, which is useful when making a background
(with mountains, a sun, a forest…). The further the design element from the tee, the closer to “0” (stars
could have a setting of “10”) and the closer the design element from the tee, the closer to 100 (a forest
with a setting of “80” would give the player the idea to be in the forest).

A parallax of <0 looks like a group is moving faster than a tee in the same direction as the latter.

A parallax >100 looks like a group is moving faster than a tee in the opposite direction.

Figure 1: Parallax.

Source: https://opengameart.org/content/

Think of it like this: Picture the sand layer as our cloud layer. The sand layer is in front of the tree layer
(playground layer). So, as the player moves, the sand layer moves in the opposite direction, so will our
cloud layer.

If you still don’t get it, it’s the same as when you stare at the horizon when travelling by train. All the
environments will move around that focal point, moving either in your direction or in the opposite
direction. Our focal point here is our playground.

Our cloud layer will have a parallax of >100. I chose 120.

Page 6 sur 17

II) Scale the layer.

Because of the parallax, the cloud group is moving around with the camera so we must scale the cloud
layer in order to cover the same area (playground) when moving around the playground layer.

The original layer I use, my playground layer in “group#1”, has a size of 𝑊100 = 123 and 𝐻100 = 82. You
can read it “Width at parallax 100 equals 123” and “Height at parallax 100 equals 82”.

The cloud layer has to cover the same area so we must multiply the original layer’s dimensions by a
factor. That factor is the parallax.

When scaling a layer, you must multiply the dimensions by the new parallax 𝑥 divided by 100.

(
𝑊𝑥

𝐻𝑥

) = (
⌈𝑊100 ∗

𝑥
100

⌉

⌈𝐻100 ∗
𝑥

100
⌉

)

(
𝑊𝑥

𝐻𝑥

) = (
⌈0.01𝑊100 ∗ 𝑥⌉

⌈0.01𝐻100 ∗ 𝑥⌉
)

For “group#2”, the cloud layer’s dimensions will be – at parallax 120:

(
𝑊120

𝐻120

) = (
⌈0.01𝑊100 ∗ 120⌉

⌈0.01𝐻100 ∗ 120⌉
)

(
𝑊120

𝐻120

) = (
⌈147. ⌉

⌈

6

98. ⌉
)

4
= ()

148

99

Be careful, the values must be rounded up to the highest unit to avoid empty gaps. It’s best to have a bit
more than a bit less. To do so, we use the ceiling function in math to represent it.

The cloud layer’s dimensions will be 𝑊120 = 148 and 𝐻120 = 99.

Page 7 sur 17

III) Align the groups.

a) Aligning groups with different parallax settings, but with same layer size.

We won’t take step II) into account for now as we try to align two groups – with parallax 100 and 120 – with one layer in each group
both of a size of X=123 and Y=82.

Now, we must align the layers (so the groups) together.

The first step is to scale (if not null) 𝑃𝑜𝑠𝑋100 the position offset in X at parallax 100 of the original group by
multiplying it by the parallax 𝑥 (the chosen, new parallax value), the same way we processed the scaling
of the layer.

𝑃𝑜𝑠 𝑋𝑥 = ⌈𝑃𝑜𝑠𝑋100 ∗
𝑥

100
⌉ = ⌈0.01𝑃𝑜𝑠𝑋100𝑥⌉

The original group has a position offset of X=19616 and Y=19680 and a parallax of X=Y=100. The cloud
group has a parallax of X=Y=120.

(
𝑃𝑜𝑠 𝑋120

𝑃𝑜𝑠 𝑌120

) = (
⌈0.01𝑃𝑜𝑠𝑋100𝑥⌉

⌈0.01𝑃𝑜𝑠𝑌100𝑥⌉
) = (

⌈0.01 ∗ 19616 ∗ 120⌉

⌈0.01 ∗ 19680 ∗ 120⌉
) = (

⌈23539.2⌉

⌈23616
)

⌉

The cloud group position offset should be 𝑃𝑜𝑠 𝑋120 = 23540 and 𝑃𝑜𝑠 𝑌120 = 23616. Unfortunately, we
aren’t quite finished yet…

The groups don’t seem to align in-game, it’s missing an offset.

𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥+ ? ⌉

Looking for a solution: defining the offset

1. I created a new map and tried several configurations. You can find the map here:

2. I made a tile layer of 50*50 in “group#1” with a standard parallax of 100. I used a tile layer instead
of a quad to be able to place the 2*2 center of the square. Unfortunately, using a filled 50*50 tile
layer means that borders are covered and that they will repeat infinitely. To avoid having a
gigantic, unpractical, and useless layer, I had to use clipping to contain the square within the
square area. Clipping, among other settings, has a value set in pixels. To clip our 50*50 tiles layer,
we must define its width and height in pixels.

You must know that 1 tile = 32 pixel, so our layer will have a width and height of 50 ∗ 32 = 1600
pixels.

The parameters of “group#1” then were:

➢ Clip X: 0
➢ Clip Y: 0
➢ Clip W: 1600
➢ Clip H: 1600

Clip X and Clip Y are set to 0 since I didn’t add a position offset yet. The group is located at the
origin of the map.

middle.map

Page 8 sur 17

3. I added game tiles that will be needed a bit later for testing. I made a 4*4 unhookable unfilled
square around the 2*2 hole, and I placed a spawn tile inside that hole.

4. I created another group I’ll call “group#2”. I added a quad layer that I clipped around the 50*50
tile layer of “group#1”, to have a quad of the same dimension.

Doing so, both layers are perfectly aligned.

5. Then, I modified the standard parallax setting of 100 of “group#2” and set Para X to 120. I chose
to only edit Para X to focus on one parameter, not to have the layer moving around the Y axis.

Naturally, “group#2” moved to the left. But, how far?

6. First, I had to place my camera in the editor close to the center of that 50*50 square. Not doing
that would be totally misleading since I’m trying to approximately find the Pos X setting to have
“group#2” align perfectly with “group#1”.
To have an idea of where the center of the screen is, you have to turn on the Proof option and try
to place the blue center on an object, at a specific and wanted position. I placed the blue center
at about the middle of the square.
Then, I slowly manually changed the value of Pos X of “group#2” until I had a value that seemed
to work – when both squares overlap. 𝑃𝑜𝑠 𝑋120 = 157 looked good enough.

7. I went in-game, loaded the map and moved to the center manually to reach X=25.00. I used the
move_raw rcon command (in F2) to be more accurate. Move_raw allows to move 1 pixel at a time,
so by 0.03125 tile.

Information that can be found on https://ddnet.org/settingscommands/:

move_raw i[x] i[y] Moves to the point with x/y-coordinates ii

Figure 2: In-game visualization of the center of the square.

8. I zoomed out to visually check if the setting was correct and it was almost the case. I tweaked it a
bit and managed to get 𝑃𝑜𝑠 𝑋120 = 160 as a satisfying result.

9. I found a correlation between 𝑃𝑜𝑠 𝑋120 = 160 and the width of the layer being 1600. The offset

caused by the parallax setting looked like it would be 1

10
 of the width of the original layer.

https://ddnet.org/settingscommands/

Page 9 sur 17

10. The current formula for 𝑃𝑜𝑠 𝑋𝑥 would be:

𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥 + 0.1 ∗ 𝑊100 ∗ 32⌉
𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥 + 3.2𝑊100⌉

• 𝑊100 = width of the layer at parallax 100 in tiles (here 50)
• 𝑃𝑜𝑠𝑋100 = position offset of the original layer at para 100 (here null)
• 𝑥 = value of the parallax of the new layer (here 120)

11. I tried some other tests with that 50*50 tiles square and it looked like it was the answer (Appendix
2), but does it work with any parallax setting?

12. I went back to step 5 and edited the parallax to 140. It didn’t work anymore. I was missing a
parameter, a factor. I visually checked and it appeared that it was about 𝑃𝑜𝑠 𝑋140 ≈ 319.

Let’s compare it with 𝑃𝑜𝑠 𝑋120 = ⌈0 + 3.2𝑊100⌉ = 160. 𝑃𝑜𝑠 𝑋140 looks like it’s twice the value of
𝑃𝑜𝑠 𝑋120.

13. Since the position offset doesn’t look like 1

10
 of the layer size anymore, we must focus on the

latter.

𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥 + 0.1 ∗ 𝑊100 ∗ 32⌉

The issue is here.

14. Let’s name “𝑦” the parallax difference between our chosen parallax “𝑥” and the playground

default parallax 100.

𝑦 = 𝑥 − 100

15. We have a 0.1(1

10
) factor for parallax 120 and that factor is nullified when parallax equals 100.

There is a step of 0.1 for an increase of 20 parallax. We will call “𝑍” our real factor (Appendix 4).

𝑍 = 𝑦 ∗
0.1

20
 𝑂𝑅 𝑍 =

𝑦

200

We can now replace y.

𝑍𝑥 =
𝑥 − 100

200

16. Let’s try with parallax 120 and 140.

𝑍120 =
120 − 100

200
= 0.1

𝑍140 =
140 − 100

200
= 0.2

17. It’s time to edit our previous 𝑃𝑜𝑠𝑋𝑥 formula and replace the 0.1 factor by 𝑍𝑥 with “𝑥” our chosen
parallax. (See 10 for an explanation of the variables)

𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥 + 𝑍𝑥 ∗ 𝑊100 ∗ 32⌉ = ⌈0.01𝑃𝑜𝑠𝑋100𝑥 +
𝑥 − 100

200
∗ 𝑊100 ∗ 32⌉

𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥 + 0.16𝑊100ሺ𝑥 − 100 ⌉ሻ

Page 10 sur 17

18. Now let’s apply it to Troubled.

𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥 + 0.16𝑊100ሺ𝑥 − 100 ⌉ሻ

• 𝑊100 = 123
• 𝑃𝑜𝑠𝑋100 = 19616
• 𝑥 = 120

𝑃𝑜𝑠 𝑋120 = ⌈0.01 ∗ 19616 ∗ 120 + 0.16 ∗ 123 ∗ ሺ120 − 100 ⌉ሻ
𝑃𝑜𝑠 𝑋120 = ⌈23932.8⌉ = 23933

19. It works!

b) Aligning groups with different parallax settings, with different layer size.

Let’s have a look at what we have and what we expect (green= “group#1”; blue= “group#2”):

Figure 3: Representation of two layers aligned. Same layer size on the left. Different layer size on the right.

How to align and center both layers (and groups)? It’s quite simple.

We can look at the difference between the two layers, divide it in two (represented in red on the image next
page) and remove that value from our previous calculation to have our new Pos X value.

You can also have a peek at my handwritten sheet (Appendix 1).

Figure 4: Position of the layers on the map.

Page 11 sur 17

The difference can be written with the following formula – with 𝑥 parallax:

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑊𝑥 − 𝑊100

2
∗ 32

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 16 ∗ ሺ𝑊𝑥 − 𝑊100ሻ

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 16 ∗ ሺ⌈0.01𝑊100𝑥⌉ − 𝑊100ሻ

The difference applied to group#2 is:

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 16 ∗ ሺ⌈0.01𝑊100𝑥⌉ − 𝑊100ሻ

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 16 ∗ ሺ⌈0.01 ∗ 123 ∗ 120⌉ − 123ሻ

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 400

Let’s add it to our previous calculation of 𝑃𝑜𝑠 𝑋𝑥:

𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥 + 0.16𝑊100ሺ𝑥 − 100ሻ − 16 ∗ ሺ𝑊𝑥 − 𝑊100ሻ⌉
𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥 + 0.16𝑊100𝑥 − 16𝑊100 − 16𝑊𝑥 − 16𝑊100⌉
𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥 + 16 ∗ 0.01𝑊100𝑥 − 16𝑊100 − 16𝑊𝑥 − 16𝑊100⌉
𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥 + 16𝑊𝑥 − 16𝑊100 − 16𝑊𝑥 − 16𝑊100⌉
𝑃𝑜𝑠 𝑋𝑥 = ⌈0.01𝑃𝑜𝑠𝑋100𝑥⌉

We notice that the formula to align two layers of different sizes in groups of different parallaxes, both
scaled with a common factor (𝑥, the parallax) simplifies to our very first equation in III) a).

Again, at parallax 120:

(
𝑃𝑜𝑠 𝑋𝑥

𝑃𝑜𝑠 𝑌𝑥

) = (
⌈0.01𝑃𝑜𝑠𝑋100𝑥⌉

⌈0.01𝑃𝑜𝑠𝑌100𝑥⌉
)

(
𝑃𝑜𝑠 𝑋120

𝑃𝑜𝑠 𝑌120

) = (
⌈0.01𝑃𝑜𝑠𝑋100𝑥⌉

⌈0.01𝑃𝑜𝑠𝑌100𝑥⌉
) = (

⌈0.01 ∗ 19616 ∗ 120⌉

⌈0.01 ∗ 19680 ∗ 120⌉
) = (

⌈23539.2⌉

⌈23616
)

⌉
= (

23540
)

23616

It works! We now know how to set a (𝑃𝑜𝑠 𝑋𝑥
𝑃𝑜𝑠 𝑌𝑥

) to align and center two layers of different size in groups of

different parallax.

Page 12 sur 17

c) Groups alignment final equation.

Parameters:

• 𝑃𝑜𝑠𝑋100 = 𝑃𝑜𝑠 𝑋 of the original group at parallax 100.
• 𝑃𝑜𝑠𝑌100 = 𝑃𝑜𝑠 𝑌 of the original group at parallax 100.
• 𝑥 = chosen parallax.
• 𝑊100 and 𝐻100 = width and height of the original layer at parallax 100.

To align and center two layers of the same size and of different parallaxes:

(
𝑃𝑜𝑠 𝑋𝑥

𝑃𝑜𝑠 𝑌𝑥

) = (
⌈0.01𝑃𝑜𝑠𝑋100𝑥 + 0.16𝑊100ሺ𝑥 − 100 ⌉

⌈

ሻ

0.01𝑃𝑜𝑠𝑌100𝑥 + 0.16𝐻100ሺ𝑥 − 100 ⌉
)

ሻ

To align and center two layers of different sizes and of different parallaxes, both scaled with the same
factor:

(
𝑃𝑜𝑠 𝑋𝑥

𝑃𝑜𝑠 𝑌𝑥

) = (
⌈0.01𝑃𝑜𝑠𝑋100𝑥⌉

⌈0.01𝑃𝑜𝑠𝑌100𝑥⌉
)

d) Sheet.

You can interact with the sheet below. Edit the settings in red.

Width Height
0 70 70
0

140
50 Pos X Pos Y
50 320 320 Layer of same size and different parallax

0 0 Layer of different size and different parallax

Size of the layer
Parameters

Offset of the group

Page 13 sur 17

IV) Application to Troubled.

That equation was crucial for my map as I care about it being polished and perfectly aligned and centered
all together. I wanted it to be the most advanced map ever made in matters of design.

I had quite many layers and groups to deal with. I opted for 2 cloud layers per island/group (parallax 120 &
140, so two groups were required for one island), for a bit more than 26 groups (Appendix 5).

Why so many groups you’d ask? That’s mainly for performances matters but I’ll explore that subject in
another section.

I chose tile layers instead of quad layers to take advantage of the repeating border to cover the whole map
with smaller layers, and to avoid having gaps when moving the camera around the map when zooming
out. Also, to prevent layers from overlapping (every layer would be displayed across the whole map), I
clipped them all to their area to contain them.

Here is the result:

This is “group#2” with a parallax of 120. This is “group#3” with a parallax of 140.

This is the Proof setting displaying the center of the groups.

The main group is outlined by the red teleport (and red line due to the clipping).

Page 14 sur 17

Here is an example of the settings we’ll find in one of the cloud groups.

This is “group#2” entitled “#88 Clouds1.1” for “Island1”. Under it you can see “group#3” entitled “#89
Clouds1.2” (second cloud layer) for “Island1” as well.

Let’s have a look at the settings:

➢ Pos X = 23540 which we found in III) b).
➢ Pos Y = 23616 (see Appendix 5).
➢ Para X and Para Y = 120
➢ Clipping: Yes, as explained before, to avoid filling the whole map.
➢ Clip X = 19616, the offset of “Island1”.
➢ Clip Y = 19680, the offset of “Island1”.
➢ Clip W = 3936, the width of “Island1” (123 tiles * 32px).
➢ Clip H = 2624, the height of “Island1” (82 tiles * 32px).

Figure 5: In-game editor screenshot of “Clouds1.1”.

And these are the settings of “Island1” for you to establish the connection between the two:

Figure 6: In-game editor screenshot of "Island1".

Page 15 sur 17

Appendixes.
Appendix 1: Analyzing the first parameters of the equation to check its behavior when adding a position
offset.

Here, there is an offset of 50 tiles so 1600px to the right. The result at parallax 120 is:

𝑃𝑜𝑠 𝑋50 𝑡𝑖𝑙𝑒𝑠 = 50 ∗ 32 ∗
120

100
+

1

10
∗ 50 ∗ 32 = 1600 ∗ 1.2 + 160

Appendix 2: First overview and application of a possible equation.

The square on the left was aligned with the square on the right before the change of parallax. We witness
its movement to the left of an unknown number of pixels.

Page 16 sur 17

Appendix 3: Overview of the position of the layers in a map, calculation of the difference between two
layers of different sizes and results applied to the original Pos X offset.

Appendix 4: Calculation of the factor to ascertain the offset induced by the parallax of a group.

Page 17 sur 17

Appendix 5: Automated Excel spreadsheet to determine the width and height of each layer and the groups
offset positions of each layer for different parallax settings.

Resource for the map Troubled by Nehr and Pipou.

