J. Tupper concocted the amazing formula 1/2<|mod(|_y/(17)|2^(-17|x|-mod(|y|,17)),2)|, where |_x| is the floor function and mod(b,m) is the mod function, which, when graphed over 0<=x<=105 and n<=y<=n+16 with n=96093937991895888497167296212785275471500433 966012930665150551927170280239526642468964284217 4350718121267153782770623355993...